Listing 1 - 10 of 430 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Evolution equations. --- Evolutionary equations --- Equations, Evolution --- Equations of evolution --- Differential equations
Choose an application
Choose an application
This self-contained book will benefit beginners as well as researchers. It is devoted to Diophantine approximation, the analytic theory of Dirichlet series, and some connections between these two domains, which often occur through the Kronecker approximation theorem. Accordingly, the book is divided into seven chapters, the first three of which present tools from commutative harmonic analysis, including a sharp form of the uncertainty principle, ergodic theory and Diophantine approximation to be used in the sequel. A presentation of continued fraction expansions, including the mixing property of the Gauss map, is given. Chapters four and five present the general theory of Dirichlet series, with classes of examples connected to continued fractions, the famous Bohr point of view, and then the use of random Dirichlet series to produce non-trivial extremal examples, including sharp forms of the Bohnenblust-Hille theorem. Chapter six deals with Hardy-Dirichlet spaces, which are new and useful Banach spaces of analytic functions in a half-plane. Finally, chapter seven presents the Bagchi-Voronin universality theorems, for the zeta function, and r-tuples of L functions. The proofs, which mix hilbertian geometry, complex and harmonic analysis, and ergodic theory, are a very good illustration of the material studied earlier.
Mathematics. --- Mathematics, general. --- Diophantine equations --- Numerical solutions. --- Diophantic equations --- Equations, Diophantic --- Equations, Diophantine --- Equations, Indefinite --- Equations, Indeterminate --- Indefinite equations --- Indeterminate equations --- Diophantine analysis --- Math --- Science
Choose an application
This book gives an up-to-date exposition on the theory of oblique derivative problems for elliptic equations. The modern analysis of shock reflection was made possible by the theory of oblique derivative problems developed by the author. Such problems also arise in many other physical situations such as the shape of a capillary surface and problems of optimal transportation. The author begins the book with basic results for linear oblique derivative problems and work through the theory for quasilinear and nonlinear problems. The final chapter discusses some of the applications. In addition, no
Differential equations, Elliptic. --- Differential equations, Partial. --- Partial differential equations --- Elliptic differential equations --- Elliptic partial differential equations --- Linear elliptic differential equations --- Differential equations, Linear --- Differential equations, Partial --- Mathematical physics.
Choose an application
Choose an application
Listing 1 - 10 of 430 | << page >> |
Sort by
|