Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Soil contamination has been identified as one of the main threats to soil, inducing the degradation of global soils and driving long-term losses of the ecosystem services that they provide. As a result of human activities, the amount of soil contamination caused by heavy metal(loid)s has severely increased over the last few decades and has become a worldwide environmental issue that has attracted considerable public attention. Although many research efforts have highlighted how soil contamination is a global threat and provided an overview of the importance of healthy soil, there is still a great need for additional information from different regions around the world, and concrete strategies, which can be implemented to address the causes and impacts of this major threat, urgently need to be developed. In this context, this book was launched with the scope of bringing together articles presenting the development of novel science-based methods and applications that enhance the remediation of contaminated soil by focusing on the identification of the main sources of soil contamination caused by heavy metal(loid)s (HM)/potentially toxic elements (PTEs) in different soil types; the chemistry, potential mobility, and bioavailability of the contaminants that are commonly found in contaminated soils; the assessment of the negative impacts and risks associated with HM/PTE-induced soil contamination on crop yields; soil biota, food security, and human health; and the available methods and strategies for monitoring, assessing, and remediating soils that have been contaminated by HM/PTEs.
PTE --- anthropogenic soils --- Technosols --- trace elements --- heavy metals --- urban agriculture --- heavy metal availability --- enrichment factor --- redox --- biochar --- cadmium --- lead --- contaminated paddy soil --- short- and long-term mechanisms --- ACC deaminase --- heavy metal stress --- PGPR --- fertilizers --- nutrients --- yield --- selenium --- acid soils --- alkaline soils --- adsorption --- desorption --- Freundlich --- Langmuir --- Mediterranean soils --- vehicular emissions --- road age --- diffusive gradients in thin films (DGT) --- metal dissociation time (Tc) --- wheat assay --- optimised linear model --- biochar application rates --- metal accumulation --- nitrogen --- ryegrass --- n/a
Choose an application
Soil degradation is one of the most topical environmental threats. A number of processes causing soil degradation, specifically erosion, compaction, salinization, pollution, and loss of both organic matter and soil biodiversity, are also strictly connected to agricultural activity and its intensification. The development and adoption of sustainable agronomic practices able to preserve and enhance the physical, chemical, and biological properties of soils and improve agroecosystem functions is a challenge for both scientists and farmers. The Special Issue entitled “Sustainable Agriculture and Soil Conservation” collects 12 original contributions addressing the state of the art of sustainable agriculture and soil conservation. The papers cover a wide range of topics, including organic agriculture, soil amendment and soil organic carbon (SOC) management, the impact of SOC on soil water repellency, the effects of soil tillage on the quantity of SOC associated with several fractions of soil particles and depth, and SOC prediction, using visible and near-infrared spectra and multivariate modeling. Moreover, the effects of some soil contaminants (e.g., crude oil, tungsten, copper, and polycyclic aromatic hydrocarbons) are discussed or reviewed in light of the recent literature. The collection of the manuscripts presented in this Special Issue provides a relevant knowledge contribution for improving our understanding on sustainable agriculture and soil conservation, thus stimulating new views on this main topic.
Tungsten --- corn uptake --- soil characteristics --- Freundlich model --- Biolog® --- community-level physiological profiling (CLPP) --- functional diversity indices --- metabolic bacterial diversity --- olive --- soil fertility --- soil quality --- maize --- stomata --- soil --- phenanthrene --- remediation --- qualitative multi-attribute model --- total energy output --- agro-ecological service crops --- ex-post sustainability --- organic systems --- amendment --- biochar --- brewers’ spent grain --- hop --- image analysis --- plant growth --- Beerkan method --- infiltration --- forest restoration --- soil water repellency --- tillage --- fertilization --- soil depth --- organic carbon --- clay minerals --- diffuse reflectance --- infrared Fourier transform spectroscopy --- bioremediation --- composting --- PAHs --- organic co-substrates --- mulching --- flattening --- irrigation --- photosynthesis --- transpiration --- water stress integral --- fruit growth --- water use efficiency --- productivity --- soil organic matter --- near-infrared spectroscopy --- spatial heterogeneity --- multivariate adaptive regression splines --- partial least squares regression --- anaerobic digestion residues --- soil amendment --- soil fertilization --- soil organic C --- soil porosity --- soil microbial community --- copper --- rhizosphere --- smart agriculture --- microbes --- vineyard --- organic agriculture --- soil organic carbon --- soil management --- soil contamination --- soil remediation --- sustainable fruit growing --- water conservation practices --- multivariate statistical models for SOC prediction
Choose an application
The progress of society has led to an improvement of the quality of life of a significant number of people. On the other hand, anthropogenic pollution dramatically increased, with serious consequences for the environment and human health. Controlling and remedying environmental pollution is one of the main challenges of our century. Fundamental and applicative research are called to collaborate, involving scientists in the development of realistic and effective systems for the prevention and the removal of pollutants from the environment. Spreading knowledge is among the missions of researchers and this is the aim of this book, offering an updated view on innovative materials and methods for pollutant treatment. It is composed of 18 articles, among them 5 reviews and 13 original articles, dedicated to new adsorbent materials (inorganic, organic, and hybrid materials) for the capture of pollutant species and for their catalytic conversion into non-toxic substances, and to bioremediation approaches to treat contaminated media. Water, air, and soil pollution was investigated, both at the lab and large scale, with special relevance for wastewater treatments for the removal of heavy metals and organic pollutants. We are grateful to “Molecules” for the opportunity to edit the Special Issue on “Innovative Materials and Methods for the Removal of Pollutants from the Environment”. We created, for this book, an original cover image, dedicated to the efforts of chemistry to defend the beauty of environment, represented by flowers, against every prejudice that considers chemistry an enemy of life.
green-removal --- tangerine peels activated carbon --- agriculture waste --- acetamiprid pesticide --- enzymatic hydrolysis lignin --- sequential dissolution fractionation --- methylene blue adsorption capacity --- CuFe2O4 nano-particles --- CuFe2O4/PANI composite --- mercury (II) removal --- adsorption --- biochar --- pyrolysis --- heavy metals --- soil remediation --- bioavailability --- biomass waste --- N doped carbon dots --- Cd (II) --- mechanism --- water remedy --- green adsorbents --- pineapple leaves --- rose bengal (RB) dye --- face-centered central composite design (FCCCD), percentage removal (%R) --- adsorption capacity (qe) --- phosphorus removal --- toxic metals --- alginate beads --- sewage sludge --- BC --- sequential extraction --- copper --- carbon-silicon interaction --- bioremediation --- toxic pollutants --- extreme conditions --- extremophilic microorganism --- non-thermal plasma (NTP) --- exhaust emission --- internal combustion engine --- ion chemical reaction --- insensitive munitions --- 3-nitro-1,2,4-triazol-5-one (NTO) --- industrial wastewater --- vetiver grass --- phytoremediation --- phytoextraction --- ammonia --- ammonium recovery --- Freundlich --- intraparticle diffusion --- isoelectric state --- Langmuir --- pseudo-second-order --- Temkin --- zeolite --- high-strength wastewater --- sludge liquor --- chitosan --- adsorbent --- carbon --- graphene oxide --- silica --- magnetic separation --- dyes --- Langmuir isotherm --- breakthrough curve --- defluoridation --- up-flow mode --- volcanic rocks --- toluene --- rhodamine B --- water stability of monolith --- nanosorbent --- regeneration --- α-NiMoO4 --- methylene blue --- removal --- zirconium phosphate --- wastewater pollutants --- ion exchange --- heterogeneous photocatalysis --- nanomaterials --- rare earth metals --- wastewater treatment --- pollutants
Choose an application
This book introduces a variety of treatment technologies, such as physical, chemical, and biological methods for the treatment of gas emissions, wastewater, and solid waste. It provides a useful source of information for engineers and specialists, as well as for undergraduate and postgraduate students, in the areas of environmental science and engineering.
adsorption --- chromium --- competition --- fluoride --- soil and water pollution --- municipal solid waste management --- life cycle assessment --- life cycle impacts --- life cycle stages --- eutrophication --- global warming --- human health --- acidification --- Harare --- Zimbabwe --- iron tailings --- ammonium sulfate roasting process --- reaction mechanism --- kinetics --- carbon footprint --- CiteSpace --- a visual analysis --- metronidazole --- porous carbon --- surface modification --- wastewater treatment --- membrane fouling --- molecular composition of foulant --- transparent exopolymer particles (TEP) --- fouling propensities --- waste incineration --- cyclone flue --- gas-solid separation --- numerical simulation --- polysaccharides --- microfiltration process --- calcium ion --- copper adsorption --- magnetized pine needle biochar --- isotherms --- FTIR and XRD studies --- VLE --- CO2 capture --- amine --- DEA-12-PD --- 12-HEPP --- porosity properties --- adsorption capacity --- carbon dioxide storage --- melamine Schiff bases --- surface area --- energy --- antimony --- mineral processing --- potentially toxic elements --- pollution characteristics --- solid waste --- cleaner production --- electronic waste --- recycling --- waste printed circuit boards --- waste EAF slag --- magnesium silicate hydrate --- radioactive waste --- stabilization/solidification --- strontium --- leaching --- membrane technologies --- biofouling --- composite membranes --- polymer blending --- wastewater treatment plants --- environmental costs --- PID control --- dynamic assessment of performance --- heavy metals --- hybrid materials --- functionalized --- Schiff base --- lead --- Langmuir and Freundlich --- carbon capture and storage (CCS) --- offshore gas field --- techno-economic analysis --- calcium oxide nanoparticles --- calcination --- blended cement paste --- mix design --- compressive strength --- bulk density --- transition metal dichalcogenides --- liquid exfoliation --- quenching --- waste collection route planning --- traveling salesman problem --- genetic algorithms --- steelmaking --- bentonite --- solid waste management --- sustainable materials --- biomass --- characterization --- lignocellulosic --- bioenergy --- water treatment --- nanomaterials --- functionalization --- lime --- mineral nitrogen --- soil pH --- organic carbon --- microbial biomass --- N2O --- batch pyrolysis --- business model --- South Africa --- waste tyres --- circular economy --- environmental sustainability --- mollusk shell --- porous concrete --- construction --- algal biomass --- gasification --- activation energy distribution --- household solid waste --- metal recovery value --- socio-economic benefits --- waste composition of Karachi-Pakistan --- waste management --- waste recycling --- ash-free coal --- CO2 gasification --- coal structure --- tri-high coal --- nanoparticles --- ZnO --- equilibrium --- kinetic --- thermodynamic --- phosphate --- aqueous solution --- sustainable synthetic slag production --- energy recovery --- metal spheres --- fixed bed regenerator --- waste and energy nexus --- antibiotics --- competitive sorption --- retention/release --- sorbents --- surface-flow constructed wetland --- nitrogen load --- nitrate --- ammonium --- organic nitrogen --- hydraulic load --- hydraulic residence time --- temperature --- denitrification --- biological uptake --- n/a
Listing 1 - 4 of 4 |
Sort by
|