Listing 1 - 10 of 619 | << page >> |
Sort by
|
Choose an application
Engineering Energy Storage explains the engineering concepts of different relevant energy technologies in a coherent manner, assessing underlying numerical material to evaluate energy, power, volume, weight and cost of new and existing energy storage systems. With numerical examples and problems with solutions, this fundamental reference on engineering principles gives guidance on energy storage devices, setting up energy system plans for smart grids. Designed for those in traditional fields of science and professional engineers in applied industries with projects related to energy and engineering, this book is an ideal resource on the topic.
Choose an application
Choose an application
A Flywheel Energy Storage System (FESS) can rapidly inject or absorb high amounts of active power in order to support the grid, following abrupt changes in the generation or in the demand, with no concern over its lifetime. The work presented in this book studies the grid integration of a high-speed FESS in low voltage distribution grids from several perspectives, including optimal allocation, sizing, modeling, real-time simulation, and Power Hardware-in-the-Loop testing.
Choose an application
Annotation Energy storage can provide numerous beneficial services and cost savings within the electricity grid, especially when facing future challenges like renewable and electric vehicle (EV) integration. Public bodies, private companies and individuals are deploying storage facilities for several purposes, including arbitrage, grid support, renewable generation, and demand-side management. Storage deployment can therefore yield benefits like reduced frequency fluctuation, better asset utilisation and more predictable power profiles. Such uses of energy storage can reduce the cost of energy, reduce the strain on the grid, reduce the environmental impact of energy use, and prepare the network for future challenges. This Special Issue of Energies explore the latest developments in the control of energy storage in support of the wider energy network, and focus on the control of storage rather than the storage technology itself.
Choose an application
This Special Issue addresses the general problem of a proper match between the demands of energy users and the units for energy conversion and storage, by means of proper design and operation of the overall energy system configuration. The focus is either on systems including single plants or groups of plants, connected or not to one or more energy distribution networks. In both cases, the optimum design and operation involve decisions about thermodynamic processes, about the type, number, design parameters of components/plants, and storage capacities, and about mutual interconnections and the interconnections with the distribution grids. The problem is absolutely general, encompassing design and operation of energy systems for single houses, groups of houses, industries, industrial districts, municipal areas, regions and countries. The presented papers show that similar approaches can be used in different applications, although a general standard has not been achieved yet.
Choose an application
Choose an application
This work gives a comprehensive overview on materials, processes and technological challenges for electrochemical storage and conversion of energy. Optimization and development of electrochemical cells requires consideration of the cell as a whole, taking into account the complex interplay of all individual components. Considering the availability of resources, their environmental impact and requirements for recycling, the design of new concepts has to be based on the understanding of relevant processes at an atomic level.
Choose an application
Gravity Energy Storage provides a comprehensive analysis of a novel energy storage system that is based on the working principle of well-established, pumped hydro energy storage, but that also recognizes the differences and benefits of the new gravity system. This book provides coverage of the development, feasibility, design, performance, operation, and economics associated with the implementation of such storage technology. In addition, a number of modeling approaches are proposed as a solution to various difficulties, such as proper sizing, application, value and optimal design of the system. The book includes both technical and economic aspects to guide the realization of this storage system in the right direction. Finally, political considerations and barriers are addressed to complement this work.
Energy storage. --- Energy storage --- Technological innovations.
Choose an application
This book offers a thorough analysis of the mechanical properties, heat transfer, and flow characteristics as well as the monitoring techniques during the construction and operation of underground salt cavern gas storage, with an emphasis on the geological features of layered salt rocks. This information can serve as a theoretical foundation and technical guide for the underground salt cavern gas storage project. Taking into account theoretical innovations and their engineering applications, this book establishes a fundamental framework for salt cavern energy storage and covers practically every process involved in building and operating of the salt cavern energy storage. These processes include rock mechanical properties, water solution mining, gas injection for debrining, gas injection and withdrawal operation, tightness evaluation, stability assessment, operation optimization, and safety monitoring. Field engineers, researchers studying energy storage in salt caverns, and undergraduate and graduate students are the target audience for this book.
Choose an application
Listing 1 - 10 of 619 | << page >> |
Sort by
|