Narrow your search

Library

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

VIVES (3)

VUB (3)

ULiège (2)

UMons (2)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2016 (1)

2014 (1)

2003 (1)

Listing 1 - 3 of 3
Sort by
Analytic Theory of Global Bifurcation.
Author:
ISBN: 0691112983 1400884330 9781400884339 9780691112985 Year: 2016 Publisher: Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rabinowitz's classical global bifurcation theory, which concerns the study in-the-large of parameter-dependent families of nonlinear equations, uses topological methods that address the problem of continuous parameter dependence of solutions by showing that there are connected sets of solutions of global extent. Even when the operators are infinitely differentiable in all the variables and parameters, connectedness here cannot in general be replaced by path-connectedness. However, in the context of real-analyticity there is an alternative theory of global bifurcation due to Dancer, which offers a much stronger notion of parameter dependence. This book aims to develop from first principles Dancer's global bifurcation theory for one-parameter families of real-analytic operators in Banach spaces. It shows that there are globally defined continuous and locally real-analytic curves of solutions. In particular, in the real-analytic setting, local analysis can lead to global consequences--for example, as explained in detail here, those resulting from bifurcation from a simple eigenvalue. Included are accounts of analyticity and implicit function theorems in Banach spaces, classical results from the theory of finite-dimensional analytic varieties, and the links between these two and global existence theory. Laying the foundations for more extensive studies of real-analyticity in infinite-dimensional problems and illustrating the theory with examples, Analytic Theory of Global Bifurcation is intended for graduate students and researchers in pure and applied analysis.

Keywords

Differential geometry. Global analysis --- Bifurcation theory. --- Differential equations, Nonlinear --- Stability --- Numerical solutions --- Addition. --- Algebraic equation. --- Analytic function. --- Analytic manifold. --- Atmospheric pressure. --- Banach space. --- Bernhard Riemann. --- Bifurcation diagram. --- Boundary value problem. --- Bounded operator. --- Bounded set (topological vector space). --- Boundedness. --- Canonical form. --- Cartesian coordinate system. --- Codimension. --- Compact operator. --- Complex analysis. --- Complex conjugate. --- Complex number. --- Connected space. --- Coordinate system. --- Corollary. --- Curvature. --- Derivative. --- Diagram (category theory). --- Differentiable function. --- Differentiable manifold. --- Dimension (vector space). --- Dimension. --- Direct sum. --- Eigenvalues and eigenvectors. --- Elliptic integral. --- Embedding. --- Equation. --- Euclidean division. --- Euler equations (fluid dynamics). --- Existential quantification. --- First principle. --- Fredholm operator. --- Froude number. --- Functional analysis. --- Hilbert space. --- Homeomorphism. --- Implicit function theorem. --- Integer. --- Linear algebra. --- Linear function. --- Linear independence. --- Linear map. --- Linear programming. --- Linear space (geometry). --- Linear subspace. --- Linearity. --- Linearization. --- Metric space. --- Morse theory. --- Multilinear form. --- N0. --- Natural number. --- Neumann series. --- Nonlinear functional analysis. --- Nonlinear system. --- Numerical analysis. --- Open mapping theorem (complex analysis). --- Operator (physics). --- Ordinary differential equation. --- Parameter. --- Parametrization. --- Partial differential equation. --- Permutation group. --- Permutation. --- Polynomial. --- Power series. --- Prime number. --- Proportionality (mathematics). --- Pseudo-differential operator. --- Puiseux series. --- Quantity. --- Real number. --- Resultant. --- Singularity theory. --- Skew-symmetric matrix. --- Smoothness. --- Solution set. --- Special case. --- Standard basis. --- Sturm–Liouville theory. --- Subset. --- Symmetric bilinear form. --- Symmetric group. --- Taylor series. --- Taylor's theorem. --- Theorem. --- Total derivative. --- Two-dimensional space. --- Union (set theory). --- Variable (mathematics). --- Vector space. --- Zero of a function.


Book
Essays on Fourier Analysis in Honor of Elias M. Stein (PMS-42)
Authors: --- ---
ISBN: 0691632944 1400852943 0691086559 1306988802 0691603650 9781400852949 9780691603650 9780691632940 Year: 2014 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book contains the lectures presented at a conference held at Princeton University in May 1991 in honor of Elias M. Stein's sixtieth birthday. The lectures deal with Fourier analysis and its applications. The contributors to the volume are W. Beckner, A. Boggess, J. Bourgain, A. Carbery, M. Christ, R. R. Coifman, S. Dobyinsky, C. Fefferman, R. Fefferman, Y. Han, D. Jerison, P. W. Jones, C. Kenig, Y. Meyer, A. Nagel, D. H. Phong, J. Vance, S. Wainger, D. Watson, G. Weiss, V. Wickerhauser, and T. H. Wolff.The topics of the lectures are: conformally invariant inequalities, oscillatory integrals, analytic hypoellipticity, wavelets, the work of E. M. Stein, elliptic non-smooth PDE, nodal sets of eigenfunctions, removable sets for Sobolev spaces in the plane, nonlinear dispersive equations, bilinear operators and renormalization, holomorphic functions on wedges, singular Radon and related transforms, Hilbert transforms and maximal functions on curves, Besov and related function spaces on spaces of homogeneous type, and counterexamples with harmonic gradients in Euclidean space.Originally published in 1995.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Fourier analysis --- Civil & Environmental Engineering --- Engineering & Applied Sciences --- Operations Research --- Congresses --- Analysis, Fourier --- -Analysis, Fourier --- -Theory of the Fourier integral --- -517.518.5 Theory of the Fourier integral --- 517.518.5 --- 517.518.5 Theory of the Fourier integral --- Theory of the Fourier integral --- Mathematical analysis --- Analytic function. --- Banach fixed-point theorem. --- Bessel function. --- Blaschke product. --- Boundary value problem. --- Bounded operator. --- Cauchy–Riemann equations. --- Coefficient. --- Commutative property. --- Convolution. --- Degeneracy (mathematics). --- Differential equation. --- Differential geometry. --- Differential operator. --- Dirichlet problem. --- Distribution (mathematics). --- Eigenvalues and eigenvectors. --- Elias M. Stein. --- Elliptic integral. --- Elliptic operator. --- Equation. --- Ergodic theory. --- Error analysis (mathematics). --- Estimation. --- Existential quantification. --- Fourier analysis. --- Fourier integral operator. --- Fourier series. --- Fourier transform. --- Fundamental matrix (linear differential equation). --- Fundamental solution. --- Geometry. --- Green's function. --- Haar measure. --- Hardy space. --- Hardy–Littlewood maximal function. --- Harmonic analysis. --- Harmonic function. --- Harmonic measure. --- Hausdorff dimension. --- Heisenberg group. --- Hermitian matrix. --- Hilbert space. --- Hilbert transform. --- Holomorphic function. --- Hopf lemma. --- Hyperbolic partial differential equation. --- Integral geometry. --- Integral transform. --- Julia set. --- Korteweg–de Vries equation. --- Lagrangian (field theory). --- Lebesgue differentiation theorem. --- Lebesgue measure. --- Lie algebra. --- Linear map. --- Lipschitz continuity. --- Lipschitz domain. --- Mandelbrot set. --- Martingale (probability theory). --- Mathematical analysis. --- Maximal function. --- Measurable Riemann mapping theorem. --- Minkowski space. --- Misiurewicz point. --- Morera's theorem. --- Möbius transformation. --- Nilpotent group. --- Non-Euclidean geometry. --- Numerical analysis. --- Nyquist–Shannon sampling theorem. --- Ordinary differential equation. --- Orthonormal basis. --- Orthonormal frame. --- Oscillatory integral. --- Partial differential equation. --- Plurisubharmonic function. --- Pseudo-Riemannian manifold. --- Pseudo-differential operator. --- Pythagorean theorem. --- Radon transform. --- Regularity theorem. --- Representation theory. --- Riemannian manifold. --- Riesz representation theorem. --- Riesz transform. --- Schrödinger equation. --- Schwartz kernel theorem. --- Sign (mathematics). --- Simultaneous equations. --- Singular integral. --- Sobolev inequality. --- Sobolev space. --- Special case. --- Symmetrization. --- Theorem. --- Trigonometric series. --- Uniqueness theorem. --- Variable (mathematics). --- Variational inequality. --- Analyse harmonique --- Congresses.

Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation
Authors: --- ---
ISBN: 1299443451 1400837189 069111482X 0691114838 9781400837182 9781299443457 9780691114835 9780691114828 Year: 2003 Publisher: Princeton, N.J. Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important applications in the telecommunications industry. The authors exploit complete integrability to establish pointwise asymptotics for this problem's solution in the semiclassical regime and explicit integration for the underlying nonlinear, elliptic, partial differential equations suspected of governing the semiclassical behavior. In doing so they also aim to explain the observed gradient catastrophe for the underlying nonlinear elliptic partial differential equations, and to set forth a detailed, pointwise asymptotic description of the violent oscillations that emerge following the gradient catastrophe. To achieve this, the authors have extended the reach of two powerful analytical techniques that have arisen through the asymptotic analysis of integrable systems: the Lax-Levermore-Venakides variational approach to singular limits in integrable systems, and Deift and Zhou's nonlinear Steepest-Descent/Stationary Phase method for the analysis of Riemann-Hilbert problems. In particular, they introduce a systematic procedure for handling certain Riemann-Hilbert problems with poles accumulating on curves in the plane. This book, which includes an appendix on the use of the Fredholm theory for Riemann-Hilbert problems in the Hölder class, is intended for researchers and graduate students of applied mathematics and analysis, especially those with an interest in integrable systems, nonlinear waves, or complex analysis.

Keywords

Schrodinger equation. --- Wave mechanics. --- Equation, Schrödinger --- Schrödinger wave equation --- Electrodynamics --- Matrix mechanics --- Mechanics --- Molecular dynamics --- Quantum statistics --- Quantum theory --- Waves --- Differential equations, Partial --- Particles (Nuclear physics) --- Wave mechanics --- WKB approximation --- Schrödinger equation. --- Schrödinger, Équation de. --- Solitons. --- Abelian integral. --- Analytic continuation. --- Analytic function. --- Ansatz. --- Approximation. --- Asymptote. --- Asymptotic analysis. --- Asymptotic distribution. --- Asymptotic expansion. --- Banach algebra. --- Basis (linear algebra). --- Boundary (topology). --- Boundary value problem. --- Bounded operator. --- Calculation. --- Cauchy's integral formula. --- Cauchy's integral theorem. --- Cauchy's theorem (geometry). --- Cauchy–Riemann equations. --- Change of variables. --- Coefficient. --- Complex plane. --- Cramer's rule. --- Degeneracy (mathematics). --- Derivative. --- Diagram (category theory). --- Differentiable function. --- Differential equation. --- Differential operator. --- Dirac equation. --- Disjoint union. --- Divisor. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Elliptic integral. --- Energy minimization. --- Equation. --- Euler's formula. --- Euler–Lagrange equation. --- Existential quantification. --- Explicit formulae (L-function). --- Fourier transform. --- Fredholm theory. --- Function (mathematics). --- Gauge theory. --- Heteroclinic orbit. --- Hilbert transform. --- Identity matrix. --- Implicit function theorem. --- Implicit function. --- Infimum and supremum. --- Initial value problem. --- Integrable system. --- Integral curve. --- Integral equation. --- Inverse problem. --- Jacobian matrix and determinant. --- Kerr effect. --- Laurent series. --- Limit point. --- Line (geometry). --- Linear equation. --- Linear space (geometry). --- Logarithmic derivative. --- Lp space. --- Minor (linear algebra). --- Monotonic function. --- Neumann series. --- Normalization property (abstract rewriting). --- Numerical integration. --- Ordinary differential equation. --- Orthogonal polynomials. --- Parameter. --- Parametrix. --- Paraxial approximation. --- Parity (mathematics). --- Partial derivative. --- Partial differential equation. --- Perturbation theory (quantum mechanics). --- Perturbation theory. --- Pole (complex analysis). --- Polynomial. --- Probability measure. --- Quadratic differential. --- Quadratic programming. --- Radon–Nikodym theorem. --- Reflection coefficient. --- Riemann surface. --- Simultaneous equations. --- Sobolev space. --- Soliton. --- Special case. --- Taylor series. --- Theorem. --- Theory. --- Trace (linear algebra). --- Upper half-plane. --- Variational method (quantum mechanics). --- Variational principle. --- WKB approximation. --- Schrödinger, Équation de.

Listing 1 - 3 of 3
Sort by