Listing 1 - 9 of 9 |
Sort by
|
Choose an application
This book gives information and guidance on important subjects. It presents the major and efficient applications for efficient insulation materials. The book is divided into two parts. Part I discusses ecological insulation materials. In this part, the three sub-subjects are drafting, Unconventional insulation materials, Jute-Based Insulation Material, and Possible Applications of Corn Cob as a Raw Insulation Material. Part II: discusses Practical Applying and Performance of Insulation Materials (case studies), where three sub-subjects are drafting seismic aspects of the application of thermal insulation boards beneath the building’s foundations, flammability of bio-based rigid polyurethane foam thermal insulation, and the review of some commonly used methods and techniques to measure the thermal conductivity of insulation materials.
Insulation (Heat) --- Heat insulating materials --- Thermal insulation --- Heating --- Exterior walls --- Thermal properties --- Biotechnology
Choose an application
This book has been written to present elementary practical and efficient applications in saving energy concept, as well as propose a solitary action for this category of topics. The book aims to illustrate various methods in treatment the concept of thermal insulation such as processes and the attempt to build an efficient passive building model.
Buildings --- Insulation (Heat) --- Energy conservation. --- Heat insulating materials --- Thermal insulation --- Heating --- Exterior walls --- Thermal properties --- Building construction & materials
Choose an application
Around 80% of electrical consumption in an industrialised society is used by machinery and electrical drives. Therefore, it is key to have reliable grids that feed these electrical assets. Consequently, it is necessary to carry out pre-commissioning tests of their insulation systems and, in some cases, to implement an online condition monitoring and trending analysis of key variables, such as partial discharges and temperature, among others. Because the tests carried out for analysing the dielectric behaviour of insulation systems are commonly standardised, it is of interest to have tools that simulate the real behaviour of those and their weaknesses to prevent electrical breakdowns. The aim of this book is to provide the reader with models for electrical insulation systems diagnosis.
Electric insulators and insulation --- Mathematical models. --- Testing. --- Bushings --- Insulation (Electric) --- Electric resistance --- Insulating materials --- Dielectrics --- Engineering --- Physical Sciences --- Engineering and Technology --- Electrical and Electronic Engineering --- Circuit Design
Choose an application
In the last decades, inedible lignocellulosic biomasses have attracted significant attention for being abundant resources that are not in competition with agricultural land or food production and, therefore, can be used as starting renewable material for the production of a wide variety of platform chemicals. The three main components of lignocellulosic biomasses are cellulose, hemicellulose and lignin, complex biopolymers that can be converted into a pool of platform molecules including sugars, polyols, alchols, ketons, ethers, acids and aromatics. Various technologies have been explored for their one-pot conversion into chemicals, fuels and materials. However, in order to develop new catalytic processes for the selective production of desired products, a complete understanding of the molecular aspects of the basic chemistry and reactivity of biomass derived molecules is still crucial. This Special Issue reports on recent progress and advances in the catalytic valorization of cellulose, hemicellulose and lignin model molecules promoted by novel heterogeneous systems for the production of energy, fuels and chemicals.
n/a --- hemicellulose --- catalytic transfer hydrogenolysis reactions --- furfural --- ZSM-5 --- syngas --- renewable aromatics --- Diels–Alder --- lignin --- hydroisomerization --- levulinic acid --- bio-oil upgrade --- metal ferrites --- aromatic ethers --- hierarchical zeolites --- Chilean natural zeolites --- bioethanol --- renewable p-xylene --- desilication --- dimethylfuran --- GC/MS characterization --- biomass --- H-donor molecules --- heterogeneous catalysis --- polyols --- Brønsted acids sites --- spinels --- solketal --- glycerol --- chemical-loop reforming --- zeolite --- cellulose --- insulating oils --- hydrogenolysis --- lignocellulosic biomasses --- bio-insulating oil --- glycidol --- Diels-Alder
Choose an application
Antiferromagnetic spintronics is an emerging topic in spintronics that is attracting interest due to its wide range of advantages, including terahertz operation, memory without stray fields, and highly efficient spin generation. The discussion of this topic covers aspects ranging from the development of new antiferromagnetic materials to the applications of these materials in devices. Traditionally, antiferromagnets were treated as less common magnetic materials for fundamental studies and applications. However, recent miniaturisation and high-frequency operation have revealed that they are advantageous over conventional ferromagnets. This Special Issue reviews the current status and future perspectives of antiferromagnetic spintronics.
magnetoelectric effect --- antiferromagnetism --- Cr2O3 thin film --- exchange bias --- antiferromagnetic spintronics --- spintronics --- MnN --- magnetism and magnetic materials --- antiferromagnets --- Heusler alloys --- blocking temperature --- spintronic devices --- perpendicular magnetic anisotropy --- ferrimagnet --- perpendicular exchange bias --- amorphous thin films --- spintronic applications --- magnons --- synthetic antiferromagnets --- antiferromagnetic resonance --- micromagnetics --- spin pumping --- spin-orbit torque --- insulating antiferromagnet --- sub-terahertz waves --- spin-Hall effect --- garnet ferrite --- compensated ferrimagnet --- metal organic decomposition --- n/a
Choose an application
The goal of the Special Issue “Brittle Materials in Mechanical Extremes” is to spark a discussion of the analogies and the differences between different brittle materials, such as ceramics and concrete. The contributions to the Issue span from construction materials (asphalt and concrete) to structural ceramics to ice. Data reported in the Issue were obtained by advanced microstructural techniques (microscopy, 3D imaging, etc.) and linked to mechanical properties (and their changes as a function of aging, composition, etc.). The description of the mechanical behavior of brittle materials under operational loads, for instance, concrete and ceramics under very high temperatures, offers an unconventional viewpoint on the behavior of such materials. While it is by no means exhaustive, this Special Issue paves the road for the fundamental understanding and further development of materials.
restraint --- creep --- double feedback method --- concrete --- temperature stress testing machine (TSTM) --- alkali-activated slag --- elevated temperatures --- Na2O concentration --- residual strength --- brittleness --- melting --- Fiber-reinforced concrete --- X-ray computed tomography (CT) --- anisotropic fiber orientation --- inverse analysis --- silica --- super-insulating materials --- instrumented indentation --- porosity --- electro-fused zirconia --- microcracking --- synchrotron x-ray refraction radiography (SXRR) --- thermal expansion --- ice --- high rate loading --- compressive loading --- Split Hopkinson bar --- in-situ fractography --- biomaterials --- bioceramics --- coating --- mechanical properties --- existing buildings --- reinforced concrete --- seismic vulnerability assessment --- in situ concrete strength --- variability of concrete strength --- high speed railway --- SBS/CR modified asphalt --- long-term aging --- anti-aging --- engineered cementitious composites --- steel grid --- fiber --- tensile capacity --- energy dissipation --- ceramics --- asphalt --- microstructure --- strength
Choose an application
The use of composite materials in the design process allows one to tailer a component’s mechanical properties, thus reducing its overall weight. On the one hand, the possible combinations of matrices, reinforcements, and technologies provides more options to the designer. On the other hand, it increases the fields that need to be investigated in order to obtain all the information requested for a safe design. This Applied Sciences Special Issue, “Composite Materials in Design Processes”, collects recent advances in the design methods for components made of composites and composite material properties at a laminate level or using a multi-scale approach.
laser etching --- water jet --- polycrystalline silicon --- orthogonal test --- physical conditions --- electrodeposition --- SiC whisker --- texture --- morphology --- self-healing --- epoxy resin --- microcapsule --- insulating composite --- breakdown strength --- physical damage --- electrical tree --- analytical model --- fabrics --- weave pattern --- shear deformation --- tension-shear coupling --- RTM --- composites --- FEM simulation --- permeability characterization --- design optimization --- solar vehicles --- photovoltaic roof --- lightweight structures --- carbon fiber-reinforced plastic (CFRP) --- natural frequencies --- stiffness --- heat exchange --- Ansys ACP --- constructal design --- resin flow --- porous media --- numerical simulation --- filling time --- composite ship --- composite structure --- glass fiber content --- void volume --- burn-off test --- calcination test --- composite laminates --- nanofibers --- fracture --- polyvinylidene fluoride --- polysulfone --- CFRP laminate --- thin composite panel --- viscoelastic material --- vibration response --- damping --- experimental modal analysis --- slamming --- damage --- viscoelastic layer --- prepreg --- OoA --- n/a
Choose an application
Studies on new solutions in the field of high-voltage insulating materials are presented in this book. Most of these works concern liquid insulation, especially biodegradable ester fluids; however, in a few cases, gaseous and solid insulation are also considered. Both fundamental research as well as research related to industrial applications are described. In addition, experimental techniques aimed at possibly finding new ways of analysing the experimental data are proposed to test dielectrics.
optical radiation --- electrical discharges --- insulating liquids --- energy distribution --- transformer --- oil–paper insulation --- moisture --- drying --- synthetic ester --- mineral oil --- natural ester --- dielectric liquid mixtures --- retrofilling of power transformers --- streaming electrification --- ECT --- insulation aging --- insulation diagnostics --- aramid paper --- cellulose --- dielectric materials --- insulation system --- thermal conductivity --- transformers --- partial discharge --- harmonic distortion --- non-uniform electric field --- discrete Fourier transform --- electric arc --- gas insulation --- arc welding --- optical method --- spectrophotometer --- electromagnetic radiation --- arc lamps --- dielectric polarization --- relaxation methods --- activation energy --- cellulose–aramid paper --- moisture insulation --- ageing effect --- power transformer insulation testing --- insulation liquid mixtures --- power transformers --- retrofilling --- rotating disc system --- synthetic esters --- liquid insulation --- DC high voltage --- composite insulator --- glass-reinforced epoxy core --- 3-point bending test --- mechanical strength --- micro-hardness --- naturel ester oil --- nanofluids --- zinc oxide --- AC breakdown voltage --- Weibull distribution --- normal distribution --- transformer winding --- deformation --- frequency response analysis (FRA) --- numerical index --- window width --- power transformer --- interpolation --- mathematical modeling --- n/a --- oil-paper insulation --- cellulose-aramid paper
Choose an application
Modelling and simulation in acoustics is currently gaining importance. In fact, with the development and improvement of innovative computational techniques and with the growing need for predictive models, an impressive boost has been observed in several research and application areas, such as noise control, indoor acoustics, and industrial applications. This led us to the proposal of a special issue about “Modelling, Simulation and Data Analysis in Acoustical Problems”, as we believe in the importance of these topics in modern acoustics’ studies. In total, 81 papers were submitted and 33 of them were published, with an acceptance rate of 37.5%. According to the number of papers submitted, it can be affirmed that this is a trending topic in the scientific and academic community and this special issue will try to provide a future reference for the research that will be developed in coming years.
noise barrier --- insertion loss --- vehicle frequencies --- diffraction --- flow speed --- Analytical solutions --- FDTD --- EMATs --- beam directivity --- perforate tube silencer --- transmission loss (TL) --- pressure loss --- computational fluid dynamics (CFD) --- temperature --- air flow velocity --- graphical bilinear method --- seismic survey --- dynamic cone penetration test --- soil depth --- time-distance curve --- KZK equation --- fractional order derivative --- ultrasound hyperthermia --- HIFU --- acoustic simulation --- Kramers–Kronig relation --- stereo audio coding --- Principal Component Analysis (PCA) --- multi-frame --- Pyramid Vector Quantization (PVQ) --- bowel sound --- bowel motility --- automatic detection/evaluation --- power-normalized cepstral coefficients --- noncontact instrumentation --- acoustic localization --- cross array --- moving sound source --- discrete sampling --- error analysis --- open-air theatres --- acoustical measurements --- prediction models --- historical acoustics --- Direction of Arrival (DOA) --- time-frequency (TF) mask --- speech sparsity --- speech enhancement (SE) --- acoustic vector sensor (AVS) --- intelligent service robot --- voice generation --- multichannel electroglottograph --- larynx acoustics --- fingerprinting acoustic localization --- iterative interpolation --- K-Means clustering --- Two-stage matching --- Adjacent RPs --- dynamic tissue property --- Westervelt equation --- thermal damage zone --- submerged floating tunnel (SFT) --- mooring line --- coupled dynamics --- hydro-elastic responses --- wet natural frequencies --- mooring tension --- seismic excitation --- wave excitation --- seaquake --- thick annular circular plate --- Rayleigh integral --- finite element modeling --- rectangular and concentric stiffener patches --- taper ratio --- thickness variation --- MRI --- Zone Plates --- ultrasonic lenses --- piano playing --- vibrotactile feedback --- interaction --- musical performance --- auditory perception --- sensors --- actuators --- crack growth --- acoustic echo --- COSMO --- p-value --- l1-regularized RLS --- sparsity --- room impulse response --- total least squares --- regularization factor --- fluid-filled polyethylene (PE) pipeline --- noise control --- acoustic propagation --- cutoff phenomenon --- UWA communication --- channel modelling --- OFDM --- channel estimation --- simulation platform --- minimum variance distortionless response --- signal self-cancellation --- direction estimation --- underwater acoustic source --- spatial power spectrum --- cochlear implant --- coding strategy --- Fixed-Channel --- Channel-Picking --- vocoder simulation --- normal-hearing --- point mass --- parabolic thickness variation --- landmine detection --- lumped parameter model --- prodder --- resonance frequency --- noised-induced hearing loss --- powered surgical instruments --- ultrasonic aspirator --- transcanal endoscopic ear surgery --- balanced armature receiver --- lumped parameter method --- finite element method and Boundary element method --- focused transducer --- acoustic field --- nonuniform radiation distribution --- Bessel radiation distribution --- spherically curved uniform radiator --- rim radiation --- Lamb waves --- wooden constructions --- acoustics --- low frequency noise --- modelling --- ultrasonic guided waves --- SAFE --- rail defect detection --- mode excitation --- solid dielectrics --- acoustic emission --- artificial neural networks --- electrical treeing --- wavelets --- non-destructive testing --- high-voltage insulating systems --- boundary element method --- Helmholtz equation --- structural health monitoring --- mooring chain --- fatigue crack growth --- structural integrity --- n/a --- Kramers-Kronig relation
Listing 1 - 9 of 9 |
Sort by
|