Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULiège (3)

VIVES (3)

Vlaams Parlement (3)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2022 (1)

2020 (3)

Listing 1 - 4 of 4
Sort by

Book
Modelling and Management of Irrigation System
Authors: --- ---
ISBN: 3039287915 3039287907 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Irrigation is becoming an activity of precision, where combining information collected from various sources is necessary to optimally manage resources. New management strategies, such as big data techniques, sensors, artificial intelligence, unmanned aerial vehicles (UAV), and new technologies in general, are becoming more relevant every day. As such, modeling techniques, both at the water distribution network and the farm levels, will be essential to gather information from various sources and offer useful recommendations for decision-making processes. In this book, 10 high quality papers were selected that cover a wide range of issues that are relevant to the different aspects related to irrigation management: water source and distribution network, plot irrigation systems, and crop water management.


Book
Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Abiotic stress represents the main constraint for agriculture, affecting plant growth and productivity worldwide. Yield losses in agriculture will be potentiated in the future by global warming, increasing contamination, and reduced availability of fertile land. The challenge for agriculture of the present and future is that of increasing the food supply for a continuously growing human population under environmental conditions that are deteriorating in many areas of the world. Minimizing the effects of diverse types of abiotic stresses represents a matter of general concern. Research on all topics related to abiotic stress tolerance, from understanding the stress response mechanisms of plants to developing cultivars and crops tolerant to stress, is a priority. This Special Issue is focused on the physiological and molecular characterization of crop resistance to abiotic stresses, including novel research, reviews, and opinion articles covering all aspects of the responses and mechanisms of plant tolerance to abiotic. Contributions on physiological, biochemical, and molecular studies of crop responses to abiotic stresses; the description and role of stress-responsive genes; marker-assisted screening of stress-tolerant genotypes; genetic engineering; and other biotechnological approaches to improve crop tolerance were considered.

Keywords

silicon --- strawberry --- total antioxidants --- drought --- stress responses --- arbuscular mycorrhizal fungus (AMF) --- Rhizophagus clarus --- flood --- plants --- hormonal homeostasis --- physiological activity --- drought tolerance --- LEA --- Tevang 1 maize --- tobacco --- xylem vessel --- water stress --- root anatomy --- vegetable crops --- stomatal conductance --- canopy temperature --- chlorophyll fluorescence --- SPAD --- common buckwheat --- cotyledon --- root --- drought stress --- transcriptome analysis --- alfalfa --- evaluation --- growth --- heat stress --- physiological traits --- sodium azide --- okra --- waterlogging stress --- antioxidants --- gene expression --- salinity --- sodium --- potassium --- ion homeostasis-transport determinants --- CBL gene family --- Provitamin A --- maize --- morphological --- physiological --- biochemical --- β-carotene --- Capsicum annuum L. --- salt stress --- salicylic acid --- yeast --- proline --- pomegranate --- transcriptome --- tissue-specific --- signaling transduction pathways --- transcription factors --- ultrastructure --- osmotic stress --- wheat --- barley --- summer maize --- female panicle --- Abiotic stress --- climate change --- combined drought and heat stress --- genetic resources --- landrace accessions --- coated-urea fertilizer --- humic acid --- lignosulfonate --- natural polymers --- seaweed extract --- aquaporin --- Brassica rapa --- gas exchange parameters --- root hydraulic conductance --- zinc --- ALA --- abiotic stress --- chlorophyll --- photosynthesis --- antioxidant enzyme --- tomato cultivars --- salinity tolerance --- antioxidant activity --- lycopene --- ascorbic acid --- total polyphenols content --- Capsicum annuum --- root structure --- root hairs --- phosphorus use efficiency --- P-starvation --- macrominerals --- nutrient --- breeding --- eggplant --- wild relative --- vegetative growth --- ion homeostasis --- osmolytes --- oxidative stress --- Phaseolus --- landrace --- seed --- germination --- genetic approach --- sustainable agriculture --- weeds --- natural herbicides --- secondary metabolites --- postemergence --- phytotoxicity --- abiotic stress biomarkers --- bean landraces --- plant breeding --- salt stress tolerance --- water deficit --- water stress tolerance --- tea plant --- cold stress --- chitosan oligosaccharide --- physiological response --- plant growth --- agriculture --- traditions --- pseudo-science --- lunar phases --- physics --- biology --- education --- flooding --- nutrient stress --- ROS


Book
Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Abiotic stress represents the main constraint for agriculture, affecting plant growth and productivity worldwide. Yield losses in agriculture will be potentiated in the future by global warming, increasing contamination, and reduced availability of fertile land. The challenge for agriculture of the present and future is that of increasing the food supply for a continuously growing human population under environmental conditions that are deteriorating in many areas of the world. Minimizing the effects of diverse types of abiotic stresses represents a matter of general concern. Research on all topics related to abiotic stress tolerance, from understanding the stress response mechanisms of plants to developing cultivars and crops tolerant to stress, is a priority. This Special Issue is focused on the physiological and molecular characterization of crop resistance to abiotic stresses, including novel research, reviews, and opinion articles covering all aspects of the responses and mechanisms of plant tolerance to abiotic. Contributions on physiological, biochemical, and molecular studies of crop responses to abiotic stresses; the description and role of stress-responsive genes; marker-assisted screening of stress-tolerant genotypes; genetic engineering; and other biotechnological approaches to improve crop tolerance were considered.

Keywords

Research & information: general --- Biology, life sciences --- silicon --- strawberry --- total antioxidants --- drought --- stress responses --- arbuscular mycorrhizal fungus (AMF) --- Rhizophagus clarus --- flood --- plants --- hormonal homeostasis --- physiological activity --- drought tolerance --- LEA --- Tevang 1 maize --- tobacco --- xylem vessel --- water stress --- root anatomy --- vegetable crops --- stomatal conductance --- canopy temperature --- chlorophyll fluorescence --- SPAD --- common buckwheat --- cotyledon --- root --- drought stress --- transcriptome analysis --- alfalfa --- evaluation --- growth --- heat stress --- physiological traits --- sodium azide --- okra --- waterlogging stress --- antioxidants --- gene expression --- salinity --- sodium --- potassium --- ion homeostasis-transport determinants --- CBL gene family --- Provitamin A --- maize --- morphological --- physiological --- biochemical --- β-carotene --- Capsicum annuum L. --- salt stress --- salicylic acid --- yeast --- proline --- pomegranate --- transcriptome --- tissue-specific --- signaling transduction pathways --- transcription factors --- ultrastructure --- osmotic stress --- wheat --- barley --- summer maize --- female panicle --- Abiotic stress --- climate change --- combined drought and heat stress --- genetic resources --- landrace accessions --- coated-urea fertilizer --- humic acid --- lignosulfonate --- natural polymers --- seaweed extract --- aquaporin --- Brassica rapa --- gas exchange parameters --- root hydraulic conductance --- zinc --- ALA --- abiotic stress --- chlorophyll --- photosynthesis --- antioxidant enzyme --- tomato cultivars --- salinity tolerance --- antioxidant activity --- lycopene --- ascorbic acid --- total polyphenols content --- Capsicum annuum --- root structure --- root hairs --- phosphorus use efficiency --- P-starvation --- macrominerals --- nutrient --- breeding --- eggplant --- wild relative --- vegetative growth --- ion homeostasis --- osmolytes --- oxidative stress --- Phaseolus --- landrace --- seed --- germination --- genetic approach --- sustainable agriculture --- weeds --- natural herbicides --- secondary metabolites --- postemergence --- phytotoxicity --- abiotic stress biomarkers --- bean landraces --- plant breeding --- salt stress tolerance --- water deficit --- water stress tolerance --- tea plant --- cold stress --- chitosan oligosaccharide --- physiological response --- plant growth --- agriculture --- traditions --- pseudo-science --- lunar phases --- physics --- biology --- education --- flooding --- nutrient stress --- ROS --- silicon --- strawberry --- total antioxidants --- drought --- stress responses --- arbuscular mycorrhizal fungus (AMF) --- Rhizophagus clarus --- flood --- plants --- hormonal homeostasis --- physiological activity --- drought tolerance --- LEA --- Tevang 1 maize --- tobacco --- xylem vessel --- water stress --- root anatomy --- vegetable crops --- stomatal conductance --- canopy temperature --- chlorophyll fluorescence --- SPAD --- common buckwheat --- cotyledon --- root --- drought stress --- transcriptome analysis --- alfalfa --- evaluation --- growth --- heat stress --- physiological traits --- sodium azide --- okra --- waterlogging stress --- antioxidants --- gene expression --- salinity --- sodium --- potassium --- ion homeostasis-transport determinants --- CBL gene family --- Provitamin A --- maize --- morphological --- physiological --- biochemical --- β-carotene --- Capsicum annuum L. --- salt stress --- salicylic acid --- yeast --- proline --- pomegranate --- transcriptome --- tissue-specific --- signaling transduction pathways --- transcription factors --- ultrastructure --- osmotic stress --- wheat --- barley --- summer maize --- female panicle --- Abiotic stress --- climate change --- combined drought and heat stress --- genetic resources --- landrace accessions --- coated-urea fertilizer --- humic acid --- lignosulfonate --- natural polymers --- seaweed extract --- aquaporin --- Brassica rapa --- gas exchange parameters --- root hydraulic conductance --- zinc --- ALA --- abiotic stress --- chlorophyll --- photosynthesis --- antioxidant enzyme --- tomato cultivars --- salinity tolerance --- antioxidant activity --- lycopene --- ascorbic acid --- total polyphenols content --- Capsicum annuum --- root structure --- root hairs --- phosphorus use efficiency --- P-starvation --- macrominerals --- nutrient --- breeding --- eggplant --- wild relative --- vegetative growth --- ion homeostasis --- osmolytes --- oxidative stress --- Phaseolus --- landrace --- seed --- germination --- genetic approach --- sustainable agriculture --- weeds --- natural herbicides --- secondary metabolites --- postemergence --- phytotoxicity --- abiotic stress biomarkers --- bean landraces --- plant breeding --- salt stress tolerance --- water deficit --- water stress tolerance --- tea plant --- cold stress --- chitosan oligosaccharide --- physiological response --- plant growth --- agriculture --- traditions --- pseudo-science --- lunar phases --- physics --- biology --- education --- flooding --- nutrient stress --- ROS


Book
Sustainability with Changing Climate and Extremes
Authors: --- ---
ISBN: 3036558500 3036558497 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on the up-to-date studies on the sustainability with changing climate and extremes. The main contributors discussed the changing climate and extreme events, as well as their impacts on natural and human dimension sustainability, including the incorporated social–ecologic and socioeconomic processes. Special attention is given to four main sections: natural disasters in agriculture; urban/rural ecosystem, tourism, and ecosystem service; extreme climate indices, and newly created dataset for climate change.

Keywords

Research & information: general --- Environmental economics --- trade conflict --- carbon emissions --- import and export trade --- cooperative emission reduction --- meteorological hazards --- risk assessment --- spatial pattern --- population exposure --- Qinghai-Tibet Plateau --- climate change --- slope geohazards --- new geohazard clusters --- extreme cooling events --- Arctic Oscillation --- winter in China --- atmospheric circulation --- GPP --- CMIP6 --- ESM --- STA --- China --- warm days --- cold days --- warm nights --- cold nights --- hot days --- frost days --- compound drought and heatwave events --- complex network --- event synchronization --- atmospheric circulation patterns --- urban agglomeration --- drought --- heat wave --- flood --- GM (1, 1) --- Arctic --- universal thermal climate index (UTCI) --- spatial-temporal changes --- 1979–2019 --- ecosystem services trade-offs --- land-use change --- soil conservation --- carbon storage --- water yield --- precipitation gradient --- Loess Plateau --- climate hazards --- geospatial analysis --- urban adaptation --- risk management --- snow disaster --- risk zoning --- Heilongjiang Province --- precipitation --- model resolutions --- cold region of China --- spatiotemporal distribution --- spatiotemporal variation --- 1961–2019 --- high-resolution and high-quality precipitation data --- independent and non-independent test --- the 0.01° multi-source fusion precipitation product --- extreme precipitation event --- forest types --- NDVI --- AVHRR GIMMS --- temperature range --- precipitation range --- snow cover --- black carbon concentration --- radiative forcing --- northeast China --- high temperature --- mobile phone data --- impact factor --- Zhuhai City --- WRF model --- projection --- short-lived heatwave event --- long-lived heatwave event --- Yangtze River Basin --- central and western Pacific --- thermocline --- yellowfin tuna --- CPUE --- El Niño --- La Niña --- GAM model --- spring soil moisture --- impact mechanism --- Songnen Plain --- Sanjiang Plain --- maize --- diurnal temperature range --- fresh air index --- natural microclimate comfort index --- fresh air–natural microclimate comfort index --- scenic spots --- Fujian province --- extreme climate indices --- temporal and spatial dynamics --- linear trend --- climate abrupt change --- central China --- peanut drought --- Shandong Province --- natural disaster risk assessment principles --- dry-hot wind disaster --- Shandong province --- natural disaster risk assessment principle --- summer maize --- inter- and mixed cropping --- flowering period --- yield --- potato climatic productivity potential --- Inner Mongolia --- effect --- human mobility --- rainfall --- taxi GPS data --- community --- Zhuhai central areas --- citrus --- quality --- future projection --- state-owned forest farms --- human resource allocation --- industrial structure --- coordination and adaptation --- personal structure --- contiguous poverty-stricken areas --- rainstorms and droughts --- direct economic losses --- disaster-affected population --- drought and flood --- vulnerability --- risk prediction --- agroecosystem --- heatwaves --- population exposure change --- global warming --- 1.5 °C warming scenario --- 2.0 °C warming scenario --- n/a --- 1979-2019 --- 1961-2019 --- El Niño --- La Niña --- fresh air-natural microclimate comfort index

Listing 1 - 4 of 4
Sort by