Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (3)

2020 (3)

Listing 1 - 6 of 6
Sort by

Book
Marine Microbial Diversity as Source of Bioactive Compounds
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over 70% of the Earth’s surface is covered by oceans and seas, which are massively complex and consist of diverse assemblages of life forms. Marine bacteria, fungi, and other microorganisms develop unique metabolic and physiological capabilities that enable them to survive in extreme habitats and to produce compounds that might not be produced by their terrestrial counterparts. In the last few decades, the systematic investigations of marine/marine-derived microorganisms as sources of novel biologically active agents has exponentially increased. This Special Issue will focus on aspects relating to new bioactive metabolites from marine microorganisms including the isolation, taxonomy, and/or dereplication of microorganisms and the corresponding isolation, structure elucidation, biosynthesis, and/or biological activities of the new compounds. Comprehensive topical review articles relating to marine metabolites will also be considered.

Keywords

Medicine --- co-culture --- marine microbes --- natural products --- structural diversity --- biological activities --- food allergy --- deep-sea-derived viridicatol --- X-ray single crystal --- intestinal barrier --- mast cell --- calcium influx --- Chlorella --- enzymes --- lipases --- molecular modeling --- sulfated polysaccharides --- antiviral --- SARS-CoV-2 --- docking --- molecular dynamic simulations --- sea cucumber --- bioactivity --- diversity --- microorganism --- polyketides --- alkaloids --- marine-derived fungus --- Penicillium sp. --- indole-diterpenoids --- cytotoxicity --- antibacterial activity --- Leizhou Peninsula --- mangrove soil --- actinomycetia --- antimicrobial activity --- secondary metabolites --- dereplication --- metabolomics tools --- trioxacarcins --- mansouramycins --- isoquinolinequinones --- marine-derived Streptomyces sp. --- co-culture --- marine microbes --- natural products --- structural diversity --- biological activities --- food allergy --- deep-sea-derived viridicatol --- X-ray single crystal --- intestinal barrier --- mast cell --- calcium influx --- Chlorella --- enzymes --- lipases --- molecular modeling --- sulfated polysaccharides --- antiviral --- SARS-CoV-2 --- docking --- molecular dynamic simulations --- sea cucumber --- bioactivity --- diversity --- microorganism --- polyketides --- alkaloids --- marine-derived fungus --- Penicillium sp. --- indole-diterpenoids --- cytotoxicity --- antibacterial activity --- Leizhou Peninsula --- mangrove soil --- actinomycetia --- antimicrobial activity --- secondary metabolites --- dereplication --- metabolomics tools --- trioxacarcins --- mansouramycins --- isoquinolinequinones --- marine-derived Streptomyces sp.


Book
Marine Microbial Diversity as Source of Bioactive Compounds
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over 70% of the Earth’s surface is covered by oceans and seas, which are massively complex and consist of diverse assemblages of life forms. Marine bacteria, fungi, and other microorganisms develop unique metabolic and physiological capabilities that enable them to survive in extreme habitats and to produce compounds that might not be produced by their terrestrial counterparts. In the last few decades, the systematic investigations of marine/marine-derived microorganisms as sources of novel biologically active agents has exponentially increased. This Special Issue will focus on aspects relating to new bioactive metabolites from marine microorganisms including the isolation, taxonomy, and/or dereplication of microorganisms and the corresponding isolation, structure elucidation, biosynthesis, and/or biological activities of the new compounds. Comprehensive topical review articles relating to marine metabolites will also be considered.


Book
Marine Microbial Diversity as Source of Bioactive Compounds
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over 70% of the Earth’s surface is covered by oceans and seas, which are massively complex and consist of diverse assemblages of life forms. Marine bacteria, fungi, and other microorganisms develop unique metabolic and physiological capabilities that enable them to survive in extreme habitats and to produce compounds that might not be produced by their terrestrial counterparts. In the last few decades, the systematic investigations of marine/marine-derived microorganisms as sources of novel biologically active agents has exponentially increased. This Special Issue will focus on aspects relating to new bioactive metabolites from marine microorganisms including the isolation, taxonomy, and/or dereplication of microorganisms and the corresponding isolation, structure elucidation, biosynthesis, and/or biological activities of the new compounds. Comprehensive topical review articles relating to marine metabolites will also be considered.


Book
Actinomycetes : The Antibiotics Producers
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Beyond being the most important natural compound source, actinomycetes are the origin of up to two-thirds of all clinically used antibiotics. Currently, new antimicrobials are urgently needed, as infections caused by antibiotic-resistant pathogens are on the rise. In the identification of new antibiotics, many scientists are currently investigating biosynthetic aspects of antibiotic production in actinomycetes. Since the emergence of next-generation sequencing technologies, the field of antibiotics research has experienced a remarkable revival. These bacteria have the potential to produce more antibiotics than previously thought possible. Some antibiotics are produced in standard media, while others require the presence of a specific signaling molecule in the medium. Others, however, are only produced when the native regulation of the biosynthesis gene cluster is overruled. This book covers topics in the field of antibiotic-producing actinomycetes. The following tops are addressed: - Approaches to access novel antibiotic producers for novel natural compounds - Omics and genome mining approaches for the discovery of novel natural compounds - Analyses and genetic engineering of antibiotic biosynthesis - Regulation of the secondary metabolism in actinomycetes

Keywords

Research & information: general --- Biology, life sciences --- Streptomyces --- biogeography --- comparative genomics --- diversification --- secondary metabolite biosynthetic gene clusters --- SMGC --- natural products --- streptomyces --- rishirilide --- biosynthesis --- polyketides --- polynucleotide phosphorylase --- ribonuclease --- regulation --- promoter --- RNA decay --- polyadenylation --- (p)ppGpp --- antibiotic --- antibiotics --- geomicrobiology --- Illumina sequencing --- microbiome diversity --- Actinobacteria --- Cave microbiology --- secondary metabolite --- rare Actinobacteria --- Amycolatopsis --- unculturability --- siderophore --- glycopeptide antibiotics --- dbv cluster --- regulatory genes --- StrR --- LAL --- LuxR solo --- dalbavancin --- A40926 --- Streptomyces lividans --- secretion pathways --- secretory proteins --- signal peptides --- actinomycetes --- teicoplanin --- van resistance genes --- Streptomyces tsukubaensis --- tacrolimus --- FK506 --- omics --- screening --- secondary metabolism --- differentiation --- elicitors --- morphology --- liquid cultures --- metagenomics --- rare actinomycetes --- dereplication --- metabolomics --- genome mining --- secondary metabolites --- novel compounds --- physicochemical screening --- physical and chemical properties --- structural diversity --- biological activity --- Actinoallomurus --- antibiotics polyethers --- lysolipin --- minimal PKS II --- cyclases --- benz[a]naphthacene quinone --- tridecaketide --- aromatic polyketide --- pentacyclic angular polyphenol --- extended polyketide chain --- actinobacteria --- β-lactamase --- resistance --- β-lactamase inhibitor --- polyketide synthases --- acyltransferases --- engineering --- new bioactive compounds --- symbiosis --- drug discovery --- chemical ecology --- culture-based approaches --- strain --- specialized metabolites --- biosynthetic gene cluster --- n/a


Book
Actinomycetes : The Antibiotics Producers
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Beyond being the most important natural compound source, actinomycetes are the origin of up to two-thirds of all clinically used antibiotics. Currently, new antimicrobials are urgently needed, as infections caused by antibiotic-resistant pathogens are on the rise. In the identification of new antibiotics, many scientists are currently investigating biosynthetic aspects of antibiotic production in actinomycetes. Since the emergence of next-generation sequencing technologies, the field of antibiotics research has experienced a remarkable revival. These bacteria have the potential to produce more antibiotics than previously thought possible. Some antibiotics are produced in standard media, while others require the presence of a specific signaling molecule in the medium. Others, however, are only produced when the native regulation of the biosynthesis gene cluster is overruled. This book covers topics in the field of antibiotic-producing actinomycetes. The following tops are addressed: - Approaches to access novel antibiotic producers for novel natural compounds - Omics and genome mining approaches for the discovery of novel natural compounds - Analyses and genetic engineering of antibiotic biosynthesis - Regulation of the secondary metabolism in actinomycetes

Keywords

Streptomyces --- biogeography --- comparative genomics --- diversification --- secondary metabolite biosynthetic gene clusters --- SMGC --- natural products --- streptomyces --- rishirilide --- biosynthesis --- polyketides --- polynucleotide phosphorylase --- ribonuclease --- regulation --- promoter --- RNA decay --- polyadenylation --- (p)ppGpp --- antibiotic --- antibiotics --- geomicrobiology --- Illumina sequencing --- microbiome diversity --- Actinobacteria --- Cave microbiology --- secondary metabolite --- rare Actinobacteria --- Amycolatopsis --- unculturability --- siderophore --- glycopeptide antibiotics --- dbv cluster --- regulatory genes --- StrR --- LAL --- LuxR solo --- dalbavancin --- A40926 --- Streptomyces lividans --- secretion pathways --- secretory proteins --- signal peptides --- actinomycetes --- teicoplanin --- van resistance genes --- Streptomyces tsukubaensis --- tacrolimus --- FK506 --- omics --- screening --- secondary metabolism --- differentiation --- elicitors --- morphology --- liquid cultures --- metagenomics --- rare actinomycetes --- dereplication --- metabolomics --- genome mining --- secondary metabolites --- novel compounds --- physicochemical screening --- physical and chemical properties --- structural diversity --- biological activity --- Actinoallomurus --- antibiotics polyethers --- lysolipin --- minimal PKS II --- cyclases --- benz[a]naphthacene quinone --- tridecaketide --- aromatic polyketide --- pentacyclic angular polyphenol --- extended polyketide chain --- actinobacteria --- β-lactamase --- resistance --- β-lactamase inhibitor --- polyketide synthases --- acyltransferases --- engineering --- new bioactive compounds --- symbiosis --- drug discovery --- chemical ecology --- culture-based approaches --- strain --- specialized metabolites --- biosynthetic gene cluster --- n/a


Book
Actinomycetes : The Antibiotics Producers
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Beyond being the most important natural compound source, actinomycetes are the origin of up to two-thirds of all clinically used antibiotics. Currently, new antimicrobials are urgently needed, as infections caused by antibiotic-resistant pathogens are on the rise. In the identification of new antibiotics, many scientists are currently investigating biosynthetic aspects of antibiotic production in actinomycetes. Since the emergence of next-generation sequencing technologies, the field of antibiotics research has experienced a remarkable revival. These bacteria have the potential to produce more antibiotics than previously thought possible. Some antibiotics are produced in standard media, while others require the presence of a specific signaling molecule in the medium. Others, however, are only produced when the native regulation of the biosynthesis gene cluster is overruled. This book covers topics in the field of antibiotic-producing actinomycetes. The following tops are addressed: - Approaches to access novel antibiotic producers for novel natural compounds - Omics and genome mining approaches for the discovery of novel natural compounds - Analyses and genetic engineering of antibiotic biosynthesis - Regulation of the secondary metabolism in actinomycetes

Keywords

Research & information: general --- Biology, life sciences --- Streptomyces --- biogeography --- comparative genomics --- diversification --- secondary metabolite biosynthetic gene clusters --- SMGC --- natural products --- streptomyces --- rishirilide --- biosynthesis --- polyketides --- polynucleotide phosphorylase --- ribonuclease --- regulation --- promoter --- RNA decay --- polyadenylation --- (p)ppGpp --- antibiotic --- antibiotics --- geomicrobiology --- Illumina sequencing --- microbiome diversity --- Actinobacteria --- Cave microbiology --- secondary metabolite --- rare Actinobacteria --- Amycolatopsis --- unculturability --- siderophore --- glycopeptide antibiotics --- dbv cluster --- regulatory genes --- StrR --- LAL --- LuxR solo --- dalbavancin --- A40926 --- Streptomyces lividans --- secretion pathways --- secretory proteins --- signal peptides --- actinomycetes --- teicoplanin --- van resistance genes --- Streptomyces tsukubaensis --- tacrolimus --- FK506 --- omics --- screening --- secondary metabolism --- differentiation --- elicitors --- morphology --- liquid cultures --- metagenomics --- rare actinomycetes --- dereplication --- metabolomics --- genome mining --- secondary metabolites --- novel compounds --- physicochemical screening --- physical and chemical properties --- structural diversity --- biological activity --- Actinoallomurus --- antibiotics polyethers --- lysolipin --- minimal PKS II --- cyclases --- benz[a]naphthacene quinone --- tridecaketide --- aromatic polyketide --- pentacyclic angular polyphenol --- extended polyketide chain --- actinobacteria --- β-lactamase --- resistance --- β-lactamase inhibitor --- polyketide synthases --- acyltransferases --- engineering --- new bioactive compounds --- symbiosis --- drug discovery --- chemical ecology --- culture-based approaches --- strain --- specialized metabolites --- biosynthetic gene cluster --- Streptomyces --- biogeography --- comparative genomics --- diversification --- secondary metabolite biosynthetic gene clusters --- SMGC --- natural products --- streptomyces --- rishirilide --- biosynthesis --- polyketides --- polynucleotide phosphorylase --- ribonuclease --- regulation --- promoter --- RNA decay --- polyadenylation --- (p)ppGpp --- antibiotic --- antibiotics --- geomicrobiology --- Illumina sequencing --- microbiome diversity --- Actinobacteria --- Cave microbiology --- secondary metabolite --- rare Actinobacteria --- Amycolatopsis --- unculturability --- siderophore --- glycopeptide antibiotics --- dbv cluster --- regulatory genes --- StrR --- LAL --- LuxR solo --- dalbavancin --- A40926 --- Streptomyces lividans --- secretion pathways --- secretory proteins --- signal peptides --- actinomycetes --- teicoplanin --- van resistance genes --- Streptomyces tsukubaensis --- tacrolimus --- FK506 --- omics --- screening --- secondary metabolism --- differentiation --- elicitors --- morphology --- liquid cultures --- metagenomics --- rare actinomycetes --- dereplication --- metabolomics --- genome mining --- secondary metabolites --- novel compounds --- physicochemical screening --- physical and chemical properties --- structural diversity --- biological activity --- Actinoallomurus --- antibiotics polyethers --- lysolipin --- minimal PKS II --- cyclases --- benz[a]naphthacene quinone --- tridecaketide --- aromatic polyketide --- pentacyclic angular polyphenol --- extended polyketide chain --- actinobacteria --- β-lactamase --- resistance --- β-lactamase inhibitor --- polyketide synthases --- acyltransferases --- engineering --- new bioactive compounds --- symbiosis --- drug discovery --- chemical ecology --- culture-based approaches --- strain --- specialized metabolites --- biosynthetic gene cluster

Listing 1 - 6 of 6
Sort by