Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Yeasts are truly fascinating microorganisms. Due to their diverse and dynamic activities, they have been used for the production of many interesting products, such as beer, wine, bread, biofuels, and biopharmaceuticals. Saccharomyces cerevisiae (brewers’ or bakers’ yeast) is the yeast species that is surely the most exploited by man. Saccharomyces is a top choice organism for industrial applications, although its use for producing beer dates back to at least the 6th millennium BC. Bakers’ yeast has been a cornerstone of modern biotechnology, enabling the development of efficient production processes. Today, diverse yeast species are explored for industrial applications. This Special Issue is focused on some recent developments of yeast biotechnology, i.e., bioethanol, wine and beer, and enzyme production. Additionally, the new field of yeast nanobiotechnology is introduced and reviewed.
systems biology --- yeast fermentation technology --- bread --- fluxomics --- proteomics --- industrial bioreactors mini- and microbioreactors --- biofuels --- high-density fermentations --- yeast stress adaptation --- metabolomics --- evolutionary engineering --- industrial yeast products --- biopharmaceuticals material precursors --- genomics --- synthetic yeast biology --- metabolic engineering --- beer --- wine --- commodity chemical
Choose an application
Biofilms are multicellular sessile microbial communities embedded in hydrated extracellular polymeric matrices. Their formation is common in microbial life in most environments, whereas those formed on food-processing surfaces are of considerable interest in the context of food hygiene. Biofilm cells express properties that are distinct from planktonic ones, in particular, due to their notorious resistance to antimicrobial agents. Thus, a special feature of biofilms is that once they have developed, they are hard to eradicate, even when careful sanitization procedures are regularly applied. A large amount of ongoing research has investigated how and why surface-attached microbial communities develop such resistance, and several mechanisms can be acknowledged, such as heterogeneous metabolic activity, cell adaptive responses, diffusion limitations, genetic and functional diversification, and microbial interactions. The articles contained in this Special Issue deal with biofilms of some important food-related bacteria (including common pathogens such as Salmonella enterica, Listeria monocytogenes, and Staphylococcus aureus, as well as spoilage-causing spore-forming bacilli), providing novel insights into their resistance mechanisms and implications, together with novel methods (e.g., use of protective biofilms formed by beneficial bacteria, enzymes) that could be used to overcome resistance and thus improve the safety of our food supply and protect public health.
Salmonella --- biofilm --- morpothypes --- stainless steel --- food residues --- tomato --- poultry --- milk --- biofilms --- DNase I --- pre-treatment --- post-treatment --- mixed species biofilm --- disintegration of matrix --- antibiofilm methods --- bacteriocins --- biocides --- food industry --- food safety --- Listeria monocytogenes --- resistance --- lactic acid bacteria --- probiotic potential --- staphylococci --- mastitis --- dairy industry --- Bacillus species --- biofilm derived spores --- cleaning-in-place --- disinfecting effect --- disinfectants --- transcriptome --- foodborne pathogens --- dairy bacilli --- stress adaptation --- disinfection --- biocontrol --- enzymes
Choose an application
Biofilms are multicellular sessile microbial communities embedded in hydrated extracellular polymeric matrices. Their formation is common in microbial life in most environments, whereas those formed on food-processing surfaces are of considerable interest in the context of food hygiene. Biofilm cells express properties that are distinct from planktonic ones, in particular, due to their notorious resistance to antimicrobial agents. Thus, a special feature of biofilms is that once they have developed, they are hard to eradicate, even when careful sanitization procedures are regularly applied. A large amount of ongoing research has investigated how and why surface-attached microbial communities develop such resistance, and several mechanisms can be acknowledged, such as heterogeneous metabolic activity, cell adaptive responses, diffusion limitations, genetic and functional diversification, and microbial interactions. The articles contained in this Special Issue deal with biofilms of some important food-related bacteria (including common pathogens such as Salmonella enterica, Listeria monocytogenes, and Staphylococcus aureus, as well as spoilage-causing spore-forming bacilli), providing novel insights into their resistance mechanisms and implications, together with novel methods (e.g., use of protective biofilms formed by beneficial bacteria, enzymes) that could be used to overcome resistance and thus improve the safety of our food supply and protect public health.
Research & information: general --- Biology, life sciences --- Salmonella --- biofilm --- morpothypes --- stainless steel --- food residues --- tomato --- poultry --- milk --- biofilms --- DNase I --- pre-treatment --- post-treatment --- mixed species biofilm --- disintegration of matrix --- antibiofilm methods --- bacteriocins --- biocides --- food industry --- food safety --- Listeria monocytogenes --- resistance --- lactic acid bacteria --- probiotic potential --- staphylococci --- mastitis --- dairy industry --- Bacillus species --- biofilm derived spores --- cleaning-in-place --- disinfecting effect --- disinfectants --- transcriptome --- foodborne pathogens --- dairy bacilli --- stress adaptation --- disinfection --- biocontrol --- enzymes --- Salmonella --- biofilm --- morpothypes --- stainless steel --- food residues --- tomato --- poultry --- milk --- biofilms --- DNase I --- pre-treatment --- post-treatment --- mixed species biofilm --- disintegration of matrix --- antibiofilm methods --- bacteriocins --- biocides --- food industry --- food safety --- Listeria monocytogenes --- resistance --- lactic acid bacteria --- probiotic potential --- staphylococci --- mastitis --- dairy industry --- Bacillus species --- biofilm derived spores --- cleaning-in-place --- disinfecting effect --- disinfectants --- transcriptome --- foodborne pathogens --- dairy bacilli --- stress adaptation --- disinfection --- biocontrol --- enzymes
Choose an application
This book presents the advances in plant salinity stress and tolerance, including mechanistic insights revealed using powerful molecular tools and multi-omics and gene functions studied by genetic engineering and advanced biotechnological methods. Additionally, the use of plant growth-promoting rhizobacteria in the improvement of plant salinity tolerance and the underlying mechanisms and progress in breeding for salinity-tolerant rice are comprehensively discussed. Clearly, the published data have contributed to the significant progress in expanding our knowledge in the field of plant salinity stress and the results are valuable in developing salinity-stress-tolerant crops; in benefiting their quality and productivity; and eventually, in supporting the sustainability of the world food supply.
Research & information: general --- Biology, life sciences --- watermelon --- salt stress --- RNA-seq --- amino acids --- endocytosis --- Arabidopsis thaliana --- halophyte --- high-affinity potassium transporter (HKT) --- Na+ transporter --- salt tolerance --- Sporobolus virginicus --- aquaporins --- barley --- ion transport --- oocytes --- plasma membrane intrinsic proteins (PIPs) --- GmbZIP15 --- transcription factor --- drought stress --- soybean --- biotechnology breeding --- high-throughput sequencing --- QTLs --- rice --- halophytic wild barley --- salinity --- osmotic stress --- metabolome --- transcriptome --- ionome --- stress adaptation --- Hordeum marinum --- aquaporin --- Zygophyllum xanthoxylum --- plant growth --- abiotic stress --- sensing --- signaling --- transcription factors --- osmoregulation --- antioxidation --- ion homeostasis --- jasmonates --- jasmonate signaling pathway --- crosstalk --- exogenous jasmonate applications --- GWAS --- PGPR --- ACC deaminase --- seed priming --- IAA --- cell wall integrity --- cell wall sensor --- LRXs --- CrRLK1Ls --- Millettia pinnata --- calmodulin-like --- heterologous expression --- halophiles --- plant growth-promoting rhizobacteria (PGPR) --- RNA sequence analysis (RNA-seq) --- quantitative reverse transcriptase PCR (qRT-PCR) --- watermelon --- salt stress --- RNA-seq --- amino acids --- endocytosis --- Arabidopsis thaliana --- halophyte --- high-affinity potassium transporter (HKT) --- Na+ transporter --- salt tolerance --- Sporobolus virginicus --- aquaporins --- barley --- ion transport --- oocytes --- plasma membrane intrinsic proteins (PIPs) --- GmbZIP15 --- transcription factor --- drought stress --- soybean --- biotechnology breeding --- high-throughput sequencing --- QTLs --- rice --- halophytic wild barley --- salinity --- osmotic stress --- metabolome --- transcriptome --- ionome --- stress adaptation --- Hordeum marinum --- aquaporin --- Zygophyllum xanthoxylum --- plant growth --- abiotic stress --- sensing --- signaling --- transcription factors --- osmoregulation --- antioxidation --- ion homeostasis --- jasmonates --- jasmonate signaling pathway --- crosstalk --- exogenous jasmonate applications --- GWAS --- PGPR --- ACC deaminase --- seed priming --- IAA --- cell wall integrity --- cell wall sensor --- LRXs --- CrRLK1Ls --- Millettia pinnata --- calmodulin-like --- heterologous expression --- halophiles --- plant growth-promoting rhizobacteria (PGPR) --- RNA sequence analysis (RNA-seq) --- quantitative reverse transcriptase PCR (qRT-PCR)
Choose an application
This book provides new and in-depth insights into molecular aspects of plant cell signaling in response to biotic, such as aphid- and grey mold disease-resistance, and abiotic stresses, such as soil salinity and drought stress, and additionally, functional analysis on signaling components involved in flowering, juvenility, GA signaling, and biosynthesis, and miRNA-regulated gene expression. Furthermore, plant acclimation was reported, with emphasis on mechanistic insights into the roles of brassinosteroids, cyclic AMP, and hydrogen sulfide, and the recent advances of transmembrane receptor-like kinases were refined. Clearly, plant cell signaling is an intensive topic and whether it is now or in the future, the emerging technology in functional analysis such as genome editing technologies, high-throughput technologies, integrative multiple-omics as well as bioinformatics can assist researchers to reveal novel aspects of the regulatory mechanisms of plant growth and development, and acclimation to environmental and biotic stresses. The achievement of such research will be useful in improving crop stress tolerances to increase agricultural productivity and sustainability for the food supply of the world.
Research & information: general --- Biology, life sciences --- salinity --- selenium (Se) --- crops --- reactive oxygen species (ROS) --- enzymatic anti-oxidative system --- drought --- GA --- DELLA --- ABF2 --- protein-protein interaction --- Arabidopsis --- endocytosis --- microRNAs --- miPEPs --- peptides --- development --- kinase --- receptor --- stress --- tobacco --- calcium --- calcite --- reactive oxygen species --- ion channels --- cellular signalization --- brassinosteroids --- receptor-like kinases --- GSK3-like kinases --- somatic embryogenesis receptor-like kinases --- protein phosphatases --- Malus domestica --- Rosaceae --- juvenility --- FLOWERING LOCUS C --- flowering --- Hydrogen sulfide --- S-sulfhydration --- plant hormone --- gasotransmitter --- disease resistance --- plant defense --- herbivore --- phytohormone --- plant biotic stress --- plant signalling --- Medicago truncatula --- abiotic stress --- cAMP --- cyclic nucleotides-gated channels --- plant innate immunity --- Botrytis cinerea --- tomato --- iprodione --- mutant --- transcriptome analysis --- metabolism --- catalytic activity --- dwarfism --- gene cloning --- MNP1 --- CPS --- ABA signaling --- brassinosteroid signaling cascade --- drought tolerance --- priming --- stress adaptation --- stress memory --- CRISPR/Cas9 --- DELLA/TVHYNP --- Dwarf --- GA20OX2 --- GA signaling --- salinity --- selenium (Se) --- crops --- reactive oxygen species (ROS) --- enzymatic anti-oxidative system --- drought --- GA --- DELLA --- ABF2 --- protein-protein interaction --- Arabidopsis --- endocytosis --- microRNAs --- miPEPs --- peptides --- development --- kinase --- receptor --- stress --- tobacco --- calcium --- calcite --- reactive oxygen species --- ion channels --- cellular signalization --- brassinosteroids --- receptor-like kinases --- GSK3-like kinases --- somatic embryogenesis receptor-like kinases --- protein phosphatases --- Malus domestica --- Rosaceae --- juvenility --- FLOWERING LOCUS C --- flowering --- Hydrogen sulfide --- S-sulfhydration --- plant hormone --- gasotransmitter --- disease resistance --- plant defense --- herbivore --- phytohormone --- plant biotic stress --- plant signalling --- Medicago truncatula --- abiotic stress --- cAMP --- cyclic nucleotides-gated channels --- plant innate immunity --- Botrytis cinerea --- tomato --- iprodione --- mutant --- transcriptome analysis --- metabolism --- catalytic activity --- dwarfism --- gene cloning --- MNP1 --- CPS --- ABA signaling --- brassinosteroid signaling cascade --- drought tolerance --- priming --- stress adaptation --- stress memory --- CRISPR/Cas9 --- DELLA/TVHYNP --- Dwarf --- GA20OX2 --- GA signaling
Choose an application
This book provides new and in-depth insights into molecular aspects of plant cell signaling in response to biotic, such as aphid- and grey mold disease-resistance, and abiotic stresses, such as soil salinity and drought stress, and additionally, functional analysis on signaling components involved in flowering, juvenility, GA signaling, and biosynthesis, and miRNA-regulated gene expression. Furthermore, plant acclimation was reported, with emphasis on mechanistic insights into the roles of brassinosteroids, cyclic AMP, and hydrogen sulfide, and the recent advances of transmembrane receptor-like kinases were refined. Clearly, plant cell signaling is an intensive topic and whether it is now or in the future, the emerging technology in functional analysis such as genome editing technologies, high-throughput technologies, integrative multiple-omics as well as bioinformatics can assist researchers to reveal novel aspects of the regulatory mechanisms of plant growth and development, and acclimation to environmental and biotic stresses. The achievement of such research will be useful in improving crop stress tolerances to increase agricultural productivity and sustainability for the food supply of the world.
salinity --- selenium (Se) --- crops --- reactive oxygen species (ROS) --- enzymatic anti-oxidative system --- drought --- GA --- DELLA --- ABF2 --- protein–protein interaction --- Arabidopsis --- endocytosis --- microRNAs --- miPEPs --- peptides --- development --- kinase --- receptor --- stress --- tobacco --- calcium --- calcite --- reactive oxygen species --- ion channels --- cellular signalization --- brassinosteroids --- receptor-like kinases --- GSK3-like kinases --- somatic embryogenesis receptor-like kinases --- protein phosphatases --- Malus domestica --- Rosaceae --- juvenility --- FLOWERING LOCUS C --- flowering --- Hydrogen sulfide --- S-sulfhydration --- plant hormone --- gasotransmitter --- disease resistance --- plant defense --- herbivore --- phytohormone --- plant biotic stress --- plant signalling --- Medicago truncatula --- abiotic stress --- cAMP --- cyclic nucleotides-gated channels --- plant innate immunity --- Botrytis cinerea --- tomato --- iprodione --- mutant --- transcriptome analysis --- metabolism --- catalytic activity --- dwarfism --- gene cloning --- MNP1 --- CPS --- ABA signaling --- brassinosteroid signaling cascade --- drought tolerance --- priming --- stress adaptation --- stress memory --- CRISPR/Cas9 --- DELLA/TVHYNP --- Dwarf --- GA20OX2 --- GA signaling --- n/a --- protein-protein interaction
Choose an application
This book presents the advances in plant salinity stress and tolerance, including mechanistic insights revealed using powerful molecular tools and multi-omics and gene functions studied by genetic engineering and advanced biotechnological methods. Additionally, the use of plant growth-promoting rhizobacteria in the improvement of plant salinity tolerance and the underlying mechanisms and progress in breeding for salinity-tolerant rice are comprehensively discussed. Clearly, the published data have contributed to the significant progress in expanding our knowledge in the field of plant salinity stress and the results are valuable in developing salinity-stress-tolerant crops; in benefiting their quality and productivity; and eventually, in supporting the sustainability of the world food supply.
watermelon --- salt stress --- RNA-seq --- amino acids --- endocytosis --- Arabidopsis thaliana --- halophyte --- high-affinity potassium transporter (HKT) --- Na+ transporter --- salt tolerance --- Sporobolus virginicus --- aquaporins --- barley --- ion transport --- oocytes --- plasma membrane intrinsic proteins (PIPs) --- GmbZIP15 --- transcription factor --- drought stress --- soybean --- biotechnology breeding --- high-throughput sequencing --- QTLs --- rice --- halophytic wild barley --- salinity --- osmotic stress --- metabolome --- transcriptome --- ionome --- stress adaptation --- Hordeum marinum --- aquaporin --- Zygophyllum xanthoxylum --- plant growth --- abiotic stress --- sensing --- signaling --- transcription factors --- osmoregulation --- antioxidation --- ion homeostasis --- jasmonates --- jasmonate signaling pathway --- crosstalk --- exogenous jasmonate applications --- GWAS --- PGPR --- ACC deaminase --- seed priming --- IAA --- cell wall integrity --- cell wall sensor --- LRXs --- CrRLK1Ls --- Millettia pinnata --- calmodulin-like --- heterologous expression --- halophiles --- plant growth-promoting rhizobacteria (PGPR) --- RNA sequence analysis (RNA-seq) --- quantitative reverse transcriptase PCR (qRT-PCR) --- n/a
Listing 1 - 7 of 7 |
Sort by
|