Listing 1 - 10 of 10 |
Sort by
|
Choose an application
The large production and widespread daily consumption of plastic materials which began in the last century, together with the often inadequate collection and recycling systems, have made plastics and, consequently, microplastics (MPs) ubiquitous pollutants. Microplastic pollution as a global concern is confirmed by the research papers collected in this Special Issue; these papers come from 28 Universities and research institutions and are spread across ten countries on three continents. This Special Issue collected and published 11 novel contributions focusing on microplastics in aquatic environments, their occurrence and distribution, and the effects they might have on the environment and biota. As Guest Editors of this Special Issue, we were pleased to receive several papers concerning the interaction between microplastics and biota; despite a large number of peer-reviewed papers published on this research topic, there are still several gaps that need to be filled and there is concrete evidence suggesting that microplastic pollution may constitute a serious hazard to aquatic biota. The results of the contributions collected herein have helped to fill some knowledge gaps about the occurrence, distribution, and effects of microplastics on aquatic ecosystems. The outcomes clearly indicate that microplastic pollution is a serious environmental issue; the scientific community should increase its knowledge and understanding of how it could affect the environment, biota, and humans, and how it could be reduced and prevented.
Medicine --- Medical toxicology --- source --- fate --- bacterial degradation --- marine environment --- microplastics --- microplastic pollutant --- polystyrene --- biodegradation --- microalgae --- per- and polyfluoroalkyl substances --- Muskegon Lake --- plastics --- riverine --- coastal --- estuary --- characteristics --- pollution --- population growth rate --- polyamide --- silica beads --- fitness response --- rotifers --- Brachionus fernandoi --- Brachionus calyciflorus --- egg ratio --- polystyrene microplastics --- size-dependent uptake --- vectors --- cadmium --- benzo(a)pyrene --- mussels --- invasive macroalgae --- bivalves --- marine debris --- oxidative stress --- energy balance --- byssus production --- microplastic --- grass carp --- size --- accumulation --- re-consumption --- shape --- colour --- polymer type --- blackfly larvae --- freshwaters --- Simuliidae --- additives --- plasticizers --- fibers --- cellulose --- Mediterranean Sea --- chemical characterization --- environmental pollution --- biota contamination --- n/a
Choose an application
This Special Issue concerns the development of a theory for energy conversion on the nanoscale, namely, nanothermodynamics. The theory has been applied to porous media, small surfaces, clusters or fluids under confinement. The number of unsolved issues in these contexts is numerous and the present efforts are only painting part of the broader picture. We attempt to answer the following: How far down in scale does the Gibbs equation apply? Which theory can replace it beyond the thermodynamic limit? It is well known that confinement changes the equation of state of a fluid, but how does confinement change the equilibrium conditions themselves? This Special Issue explores some of the roads that were opened up for us by Hill with the idea of nanothermodynamics. The experimental progress in nanotechnology is advancing rapidly. It is our ambition with this book to inspire an increased effort in the development of suitable theoretical tools and methods to help further progress in nanoscience. All ten contributions to this Special Issue can be seen as efforts to support, enhance and validate the theoretical foundation of Hill.
Technology: general issues --- nanothermodynamics --- porous systems --- molecular simulation --- differential pressure --- integral pressure --- pressure --- confinement --- equilibrium --- thermodynamic --- small-system --- hills-thermodynamics --- pore --- nanopore --- interface --- Kirkwood-Buff integrals --- surface effects --- molecular dynamics --- activated carbon --- high-pressure methane adsorption --- thermodynamics of adsorption systems --- small system method --- thermodynamics of small systems --- hydration shell thermodynamics --- finite size correction --- adsorption --- thin film --- size-dependent --- thermodynamics --- spreading pressure --- entropy of adsorption --- polymers --- single-molecule stretching --- thermodynamics at strong coupling --- temperature-dependent energy levels --- Hill’s thermodynamics of small systems --- porous media --- statistical mechanics --- ideal gas --- nanoparticles --- n/a --- Hill's thermodynamics of small systems
Choose an application
This Special Issue concerns the development of a theory for energy conversion on the nanoscale, namely, nanothermodynamics. The theory has been applied to porous media, small surfaces, clusters or fluids under confinement. The number of unsolved issues in these contexts is numerous and the present efforts are only painting part of the broader picture. We attempt to answer the following: How far down in scale does the Gibbs equation apply? Which theory can replace it beyond the thermodynamic limit? It is well known that confinement changes the equation of state of a fluid, but how does confinement change the equilibrium conditions themselves? This Special Issue explores some of the roads that were opened up for us by Hill with the idea of nanothermodynamics. The experimental progress in nanotechnology is advancing rapidly. It is our ambition with this book to inspire an increased effort in the development of suitable theoretical tools and methods to help further progress in nanoscience. All ten contributions to this Special Issue can be seen as efforts to support, enhance and validate the theoretical foundation of Hill.
nanothermodynamics --- porous systems --- molecular simulation --- differential pressure --- integral pressure --- pressure --- confinement --- equilibrium --- thermodynamic --- small-system --- hills-thermodynamics --- pore --- nanopore --- interface --- Kirkwood-Buff integrals --- surface effects --- molecular dynamics --- activated carbon --- high-pressure methane adsorption --- thermodynamics of adsorption systems --- small system method --- thermodynamics of small systems --- hydration shell thermodynamics --- finite size correction --- adsorption --- thin film --- size-dependent --- thermodynamics --- spreading pressure --- entropy of adsorption --- polymers --- single-molecule stretching --- thermodynamics at strong coupling --- temperature-dependent energy levels --- Hill’s thermodynamics of small systems --- porous media --- statistical mechanics --- ideal gas --- nanoparticles --- n/a --- Hill's thermodynamics of small systems
Choose an application
Mesoporous materials are capturing great interest thanks to their exceptional surface area, uniform and tunable pore size, ease surface functionalization, thus enabling broad series of intervention in the field of nanomedicine. Since many years, these aspects foster a deep investigation on mesoporous nanoparticles, to design and fabricate biocompatible, smart and stimuli-responsive nanotools for controlled drug- or gene-delivery, theranostics applications, in particular for cancer therapy, and tissue engineering. This Book is thus dedicated to the most recent advances in the field, collecting research papers and reviews. It spans from the synthesis and characterization of the mesoporous material, especially those made of silica, silicon and bioactive glasses, to their functionalization with smart gate-keepers, reporter molecules or targeting ligands, up to their in-vitro applications in the nanomedicine field.
polyurethane --- injectable hydrogels --- ion/drug delivery --- mesoporous bioactive glasses --- tissue regeneration --- mesoporous silica --- therapeutic biomolecules --- proteins --- peptides --- nucleic acids --- glycans --- nanoporous silicon --- gold nanoparticles --- drug delivery --- cancer cells --- theranostics --- mesoporous silica nanoparticles --- core-shell --- surface functionalization --- cell targeting --- size-dependent delivery --- antitumoral microRNA (miRNA) --- confocal microscopy --- tumor targeting --- stimuli responsive --- multimodal decorations --- targeted and controlled cargo release --- cancer therapy and diagnosis --- alginate–poloxamer copolymer --- silk fibroin --- dual network hydrogel --- mesoporous bioactive glass --- insulin-like growth factor-1 --- electrostatic gating --- nanofluidic diffusion --- controlled drug release --- silicon membrane --- smart drug delivery --- three-dimensional porous scaffolds --- electron beam melting --- selective laser sintering --- stereolithography --- electrospinning --- two-photon polymerization --- osteogenesis --- antibiotics --- anti-inflammatory --- n/a --- alginate-poloxamer copolymer
Choose an application
The broad use of composite materials and shell structural members with complex geometries in technologies related to various branches of engineering has gained increased attention from scientists and engineers for the development of even more refined approaches and investigation of their mechanical behavior. It is well known that composite materials are able to provide higher values of strength stiffness, and thermal properties, together with conferring reduced weight, which can affect the mechanical behavior of beams, plates, and shells, in terms of static response, vibrations, and buckling loads. At the same time, enhanced structures made of composite materials can feature internal length scales and non-local behaviors, with great sensitivity to different staking sequences, ply orientations, agglomeration of nanoparticles, volume fractions of constituents, and porosity levels, among others. In addition to fiber-reinforced composites and laminates, increased attention has been paid in literature to the study of innovative components such as functionally graded materials (FGMs), carbon nanotubes (CNTs), graphene nanoplatelets, and smart constituents. Some examples of smart applications involve large stroke smart actuators, piezoelectric sensors, shape memory alloys, magnetostrictive and electrostrictive materials, as well as auxetic components and angle-tow laminates. These constituents can be included in the lamination schemes of smart structures to control and monitor the vibrational behavior or the static deflection of several composites. The development of advanced theoretical and computational models for composite materials and structures is a subject of active research and this is explored here for different complex systems, including their static, dynamic, and buckling responses; fracture mechanics at different scales; the adhesion, cohesion, and delamination of materials and interfaces.
Technology: general issues --- dynamic stability --- elastomeric foundation --- Eringen's differential constitutive model --- graphene sheet --- temperature-dependent properties --- basement bottom reinforcement --- reinforcement depth --- Young's modulus of reinforced soil --- tunnel heave --- numerical analysis --- epistemic uncertainty --- evidence theory --- robust optimization --- sensor design --- near-field earthquake --- fling-step --- far-field --- simultaneous excitation --- special moment frame (SMF) --- advanced model --- precise prediction --- circular foundation pit --- tunnel deformation --- composite --- stochastic --- natural frequency --- uncertainty --- metro constructions --- shield tunnel --- ground settlement --- soil displacement --- analytical --- Mindlin solution --- EELS --- plasmons vibrational modes --- nanoparticles --- nonlocal and size-dependent dielectric --- nanoparticle suspension --- Brownian motion --- spectral thermal pulsing --- DEM simulations --- Nano-device applications --- stratum movements --- mirror source-sink method --- centrifuge modelling test --- transport --- palletized goods --- damage --- bottle --- buckling --- Polyethylene terephthalate (PET) --- dynamic stability --- elastomeric foundation --- Eringen's differential constitutive model --- graphene sheet --- temperature-dependent properties --- basement bottom reinforcement --- reinforcement depth --- Young's modulus of reinforced soil --- tunnel heave --- numerical analysis --- epistemic uncertainty --- evidence theory --- robust optimization --- sensor design --- near-field earthquake --- fling-step --- far-field --- simultaneous excitation --- special moment frame (SMF) --- advanced model --- precise prediction --- circular foundation pit --- tunnel deformation --- composite --- stochastic --- natural frequency --- uncertainty --- metro constructions --- shield tunnel --- ground settlement --- soil displacement --- analytical --- Mindlin solution --- EELS --- plasmons vibrational modes --- nanoparticles --- nonlocal and size-dependent dielectric --- nanoparticle suspension --- Brownian motion --- spectral thermal pulsing --- DEM simulations --- Nano-device applications --- stratum movements --- mirror source-sink method --- centrifuge modelling test --- transport --- palletized goods --- damage --- bottle --- buckling --- Polyethylene terephthalate (PET)
Choose an application
This Special Issue concerns the development of a theory for energy conversion on the nanoscale, namely, nanothermodynamics. The theory has been applied to porous media, small surfaces, clusters or fluids under confinement. The number of unsolved issues in these contexts is numerous and the present efforts are only painting part of the broader picture. We attempt to answer the following: How far down in scale does the Gibbs equation apply? Which theory can replace it beyond the thermodynamic limit? It is well known that confinement changes the equation of state of a fluid, but how does confinement change the equilibrium conditions themselves? This Special Issue explores some of the roads that were opened up for us by Hill with the idea of nanothermodynamics. The experimental progress in nanotechnology is advancing rapidly. It is our ambition with this book to inspire an increased effort in the development of suitable theoretical tools and methods to help further progress in nanoscience. All ten contributions to this Special Issue can be seen as efforts to support, enhance and validate the theoretical foundation of Hill.
Technology: general issues --- nanothermodynamics --- porous systems --- molecular simulation --- differential pressure --- integral pressure --- pressure --- confinement --- equilibrium --- thermodynamic --- small-system --- hills-thermodynamics --- pore --- nanopore --- interface --- Kirkwood-Buff integrals --- surface effects --- molecular dynamics --- activated carbon --- high-pressure methane adsorption --- thermodynamics of adsorption systems --- small system method --- thermodynamics of small systems --- hydration shell thermodynamics --- finite size correction --- adsorption --- thin film --- size-dependent --- thermodynamics --- spreading pressure --- entropy of adsorption --- polymers --- single-molecule stretching --- thermodynamics at strong coupling --- temperature-dependent energy levels --- Hill's thermodynamics of small systems --- porous media --- statistical mechanics --- ideal gas --- nanoparticles --- nanothermodynamics --- porous systems --- molecular simulation --- differential pressure --- integral pressure --- pressure --- confinement --- equilibrium --- thermodynamic --- small-system --- hills-thermodynamics --- pore --- nanopore --- interface --- Kirkwood-Buff integrals --- surface effects --- molecular dynamics --- activated carbon --- high-pressure methane adsorption --- thermodynamics of adsorption systems --- small system method --- thermodynamics of small systems --- hydration shell thermodynamics --- finite size correction --- adsorption --- thin film --- size-dependent --- thermodynamics --- spreading pressure --- entropy of adsorption --- polymers --- single-molecule stretching --- thermodynamics at strong coupling --- temperature-dependent energy levels --- Hill's thermodynamics of small systems --- porous media --- statistical mechanics --- ideal gas --- nanoparticles
Choose an application
Mesoporous materials are capturing great interest thanks to their exceptional surface area, uniform and tunable pore size, ease surface functionalization, thus enabling broad series of intervention in the field of nanomedicine. Since many years, these aspects foster a deep investigation on mesoporous nanoparticles, to design and fabricate biocompatible, smart and stimuli-responsive nanotools for controlled drug- or gene-delivery, theranostics applications, in particular for cancer therapy, and tissue engineering. This Book is thus dedicated to the most recent advances in the field, collecting research papers and reviews. It spans from the synthesis and characterization of the mesoporous material, especially those made of silica, silicon and bioactive glasses, to their functionalization with smart gate-keepers, reporter molecules or targeting ligands, up to their in-vitro applications in the nanomedicine field.
Technology: general issues --- polyurethane --- injectable hydrogels --- ion/drug delivery --- mesoporous bioactive glasses --- tissue regeneration --- mesoporous silica --- therapeutic biomolecules --- proteins --- peptides --- nucleic acids --- glycans --- nanoporous silicon --- gold nanoparticles --- drug delivery --- cancer cells --- theranostics --- mesoporous silica nanoparticles --- core-shell --- surface functionalization --- cell targeting --- size-dependent delivery --- antitumoral microRNA (miRNA) --- confocal microscopy --- tumor targeting --- stimuli responsive --- multimodal decorations --- targeted and controlled cargo release --- cancer therapy and diagnosis --- alginate-poloxamer copolymer --- silk fibroin --- dual network hydrogel --- mesoporous bioactive glass --- insulin-like growth factor-1 --- electrostatic gating --- nanofluidic diffusion --- controlled drug release --- silicon membrane --- smart drug delivery --- three-dimensional porous scaffolds --- electron beam melting --- selective laser sintering --- stereolithography --- electrospinning --- two-photon polymerization --- osteogenesis --- antibiotics --- anti-inflammatory --- polyurethane --- injectable hydrogels --- ion/drug delivery --- mesoporous bioactive glasses --- tissue regeneration --- mesoporous silica --- therapeutic biomolecules --- proteins --- peptides --- nucleic acids --- glycans --- nanoporous silicon --- gold nanoparticles --- drug delivery --- cancer cells --- theranostics --- mesoporous silica nanoparticles --- core-shell --- surface functionalization --- cell targeting --- size-dependent delivery --- antitumoral microRNA (miRNA) --- confocal microscopy --- tumor targeting --- stimuli responsive --- multimodal decorations --- targeted and controlled cargo release --- cancer therapy and diagnosis --- alginate-poloxamer copolymer --- silk fibroin --- dual network hydrogel --- mesoporous bioactive glass --- insulin-like growth factor-1 --- electrostatic gating --- nanofluidic diffusion --- controlled drug release --- silicon membrane --- smart drug delivery --- three-dimensional porous scaffolds --- electron beam melting --- selective laser sintering --- stereolithography --- electrospinning --- two-photon polymerization --- osteogenesis --- antibiotics --- anti-inflammatory
Choose an application
Mesoporous materials are capturing great interest thanks to their exceptional surface area, uniform and tunable pore size, ease surface functionalization, thus enabling broad series of intervention in the field of nanomedicine. Since many years, these aspects foster a deep investigation on mesoporous nanoparticles, to design and fabricate biocompatible, smart and stimuli-responsive nanotools for controlled drug- or gene-delivery, theranostics applications, in particular for cancer therapy, and tissue engineering. This Book is thus dedicated to the most recent advances in the field, collecting research papers and reviews. It spans from the synthesis and characterization of the mesoporous material, especially those made of silica, silicon and bioactive glasses, to their functionalization with smart gate-keepers, reporter molecules or targeting ligands, up to their in-vitro applications in the nanomedicine field.
Technology: general issues --- polyurethane --- injectable hydrogels --- ion/drug delivery --- mesoporous bioactive glasses --- tissue regeneration --- mesoporous silica --- therapeutic biomolecules --- proteins --- peptides --- nucleic acids --- glycans --- nanoporous silicon --- gold nanoparticles --- drug delivery --- cancer cells --- theranostics --- mesoporous silica nanoparticles --- core-shell --- surface functionalization --- cell targeting --- size-dependent delivery --- antitumoral microRNA (miRNA) --- confocal microscopy --- tumor targeting --- stimuli responsive --- multimodal decorations --- targeted and controlled cargo release --- cancer therapy and diagnosis --- alginate–poloxamer copolymer --- silk fibroin --- dual network hydrogel --- mesoporous bioactive glass --- insulin-like growth factor-1 --- electrostatic gating --- nanofluidic diffusion --- controlled drug release --- silicon membrane --- smart drug delivery --- three-dimensional porous scaffolds --- electron beam melting --- selective laser sintering --- stereolithography --- electrospinning --- two-photon polymerization --- osteogenesis --- antibiotics --- anti-inflammatory --- n/a --- alginate-poloxamer copolymer
Choose an application
The broad use of composite materials and shell structural members with complex geometries in technologies related to various branches of engineering has gained increased attention from scientists and engineers for the development of even more refined approaches and investigation of their mechanical behavior. It is well known that composite materials are able to provide higher values of strength stiffness, and thermal properties, together with conferring reduced weight, which can affect the mechanical behavior of beams, plates, and shells, in terms of static response, vibrations, and buckling loads. At the same time, enhanced structures made of composite materials can feature internal length scales and non-local behaviors, with great sensitivity to different staking sequences, ply orientations, agglomeration of nanoparticles, volume fractions of constituents, and porosity levels, among others. In addition to fiber-reinforced composites and laminates, increased attention has been paid in literature to the study of innovative components such as functionally graded materials (FGMs), carbon nanotubes (CNTs), graphene nanoplatelets, and smart constituents. Some examples of smart applications involve large stroke smart actuators, piezoelectric sensors, shape memory alloys, magnetostrictive and electrostrictive materials, as well as auxetic components and angle-tow laminates. These constituents can be included in the lamination schemes of smart structures to control and monitor the vibrational behavior or the static deflection of several composites. The development of advanced theoretical and computational models for composite materials and structures is a subject of active research and this is explored here for different complex systems, including their static, dynamic, and buckling responses; fracture mechanics at different scales; the adhesion, cohesion, and delamination of materials and interfaces.
Technology: general issues --- dynamic stability --- elastomeric foundation --- Eringen’s differential constitutive model --- graphene sheet --- temperature-dependent properties --- basement bottom reinforcement --- reinforcement depth --- Young’s modulus of reinforced soil --- tunnel heave --- numerical analysis --- epistemic uncertainty --- evidence theory --- robust optimization --- sensor design --- near-field earthquake --- fling-step --- far-field --- simultaneous excitation --- special moment frame (SMF) --- advanced model --- precise prediction --- circular foundation pit --- tunnel deformation --- composite --- stochastic --- natural frequency --- uncertainty --- metro constructions --- shield tunnel --- ground settlement --- soil displacement --- analytical --- Mindlin solution --- EELS --- plasmons vibrational modes --- nanoparticles --- nonlocal and size-dependent dielectric --- nanoparticle suspension --- Brownian motion --- spectral thermal pulsing --- DEM simulations --- Nano-device applications --- stratum movements --- mirror source–sink method --- centrifuge modelling test --- transport --- palletized goods --- damage --- bottle --- buckling --- Polyethylene terephthalate (PET) --- n/a --- Eringen's differential constitutive model --- Young's modulus of reinforced soil --- mirror source-sink method
Choose an application
The broad use of composite materials and shell structural members with complex geometries in technologies related to various branches of engineering has gained increased attention from scientists and engineers for the development of even more refined approaches and investigation of their mechanical behavior. It is well known that composite materials are able to provide higher values of strength stiffness, and thermal properties, together with conferring reduced weight, which can affect the mechanical behavior of beams, plates, and shells, in terms of static response, vibrations, and buckling loads. At the same time, enhanced structures made of composite materials can feature internal length scales and non-local behaviors, with great sensitivity to different staking sequences, ply orientations, agglomeration of nanoparticles, volume fractions of constituents, and porosity levels, among others. In addition to fiber-reinforced composites and laminates, increased attention has been paid in literature to the study of innovative components such as functionally graded materials (FGMs), carbon nanotubes (CNTs), graphene nanoplatelets, and smart constituents. Some examples of smart applications involve large stroke smart actuators, piezoelectric sensors, shape memory alloys, magnetostrictive and electrostrictive materials, as well as auxetic components and angle-tow laminates. These constituents can be included in the lamination schemes of smart structures to control and monitor the vibrational behavior or the static deflection of several composites. The development of advanced theoretical and computational models for composite materials and structures is a subject of active research and this is explored here for different complex systems, including their static, dynamic, and buckling responses; fracture mechanics at different scales; the adhesion, cohesion, and delamination of materials and interfaces.
dynamic stability --- elastomeric foundation --- Eringen’s differential constitutive model --- graphene sheet --- temperature-dependent properties --- basement bottom reinforcement --- reinforcement depth --- Young’s modulus of reinforced soil --- tunnel heave --- numerical analysis --- epistemic uncertainty --- evidence theory --- robust optimization --- sensor design --- near-field earthquake --- fling-step --- far-field --- simultaneous excitation --- special moment frame (SMF) --- advanced model --- precise prediction --- circular foundation pit --- tunnel deformation --- composite --- stochastic --- natural frequency --- uncertainty --- metro constructions --- shield tunnel --- ground settlement --- soil displacement --- analytical --- Mindlin solution --- EELS --- plasmons vibrational modes --- nanoparticles --- nonlocal and size-dependent dielectric --- nanoparticle suspension --- Brownian motion --- spectral thermal pulsing --- DEM simulations --- Nano-device applications --- stratum movements --- mirror source–sink method --- centrifuge modelling test --- transport --- palletized goods --- damage --- bottle --- buckling --- Polyethylene terephthalate (PET) --- n/a --- Eringen's differential constitutive model --- Young's modulus of reinforced soil --- mirror source-sink method
Listing 1 - 10 of 10 |
Sort by
|