Narrow your search
Listing 1 - 8 of 8
Sort by

Book
Root hairs
Authors: ---
ISBN: 9783540794059 9783540794042 Year: 2009 Volume: 12 Publisher: Berlin : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Root hairs, the tip-growing extensions of root epidermal cells, are a model system for answering many plant cell and developmental biology research questions. This book, written by experts in the field, covers the research up to 2008 on cellular, genetic, electrophysiological and developmental aspects of root hair growth, as well as the interaction of root hairs with rhizobia and mycorrhizae in the establishment of symbiosis. With a wealth of information on technical and experimental aspects useful in the laboratory, this comprehensive book is a valuable resource for researchers and students in the broad field of plant cell and molecular biology.


Dissertation
Studies on legume root hair development : correlations with the infection process by Rhizobium bacteria.
Author:
ISBN: 9054855525 Year: 1996 Publisher: Wageningen : Landbouwuniversiteit Wageningen,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Root hairs
Authors: ---
ISBN: 3540794042 9786612924132 3540794050 1282924133 Year: 2009 Publisher: Berlin : Springer-Verlag,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Root hairs, the tip-growing extensions of root epidermal cells, are a model system for answering many plant cell and developmental biology research questions. This book, written by experts in the field, covers the research up to 2008 on cellular, genetic, electrophysiological and developmental aspects of root hair growth, as well as the interaction of root hairs with rhizobia and mycorrhizae in the establishment of symbiosis. With a wealth of information on technical and experimental aspects useful in the laboratory, this comprehensive book is a valuable resource for researchers and students in the broad field of plant cell and molecular biology.


Book
Hairy Roots : An Effective Tool of Plant Biotechnology
Authors: --- ---
ISBN: 9811325626 9811325618 Year: 2018 Publisher: Singapore : Springer Singapore : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The growing scale of plant-based chemicals for industrial use has generated considerable interest in developing methods to meet their desired production levels. Among various available strategies for their production, the development of Agrobacterium rhizogenes mediated hairy root cultures (HRCs) is generally considered the most feasible approach. Additionally, several proof-of-principle experiments have demonstrated the practical feasibility of HRCs in the plant-based remediation of environment pollutants, biotransformation of important compounds, and production of therapeutic proteins.Given that hairy root biotechnology has now been recognized as a promising and highly dynamic research area, this book offers a timely update on recent advances, and approaches hairy roots as a multifaceted biological tool for various applications. Further, it seeks to investigate the loopholes in existing methodologies, identify remaining challenges and find potential solutions by presenting well thought-out scientific discussions from various eminent research groups working on hairy root biotechnology. This book provides detailed conceptual and practical information on HRC-based research, along with relevant case studies. The content is divided into three broad sections, namely (i) Hairy Roots and Secondary Metabolism, (ii) Progressive Applications, and (iii) Novel Approaches and Future Prospects. By informing the research and teaching community about the major strides made in HRC-based interventions in plant biology and their applications, the book is sure to spark further research in this fascinating field.


Book
Root systems biology
Authors: ---
ISBN: 9782889192755 Year: 2014 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The understanding of biological complexity has been greatly facilitated by cross-disciplinary, holistic approaches that allow insights into the function and regulation of biological processes that cannot be captured by dissecting them into their individual components. In addition, the development of novel tools has dramatically increased our ability to interrogate information at the nucleic acid, protein and metabolite level. The integration and interpretation of disparate data sets, however, still remain a major challenge in systems biology. Roots provide an excellent model for studying physiological, developmental, and metabolic processes. The availability of genetic resources, along with sequenced genomes has allowed important discoveries in root biochemistry, development and function. Roots are transparent, allowing optical investigation of gene activity in individual cells and experimental manipulation. In addition, the predictable fate of cells emerging from the root meristem and the continuous development of roots throughout the life of the plant, which permits simultaneous observation of different developmental stages, provide ideal premises for the analysis of growth and differentiation. Moreover, a genetically fixed cellular organization allows for studying the utilization of positional information and other non-cell-autonomous phenomena, which are of utmost importance in plant development. Although their ontogeny is largely invariant under standardized experimental conditions, roots possess an extraordinary capacity to respond to a plethora of environmental signals, resulting in distinct phenotypic readouts. This high phenotypic plasticity allows research into acclimative and adaptive strategies, the understanding of which is crucial for germplasm enhancement and crop improvement. With the aim of providing a current snapshot on the function and development of roots at the systems level, this Research Topic collated original research articles, methods articles, reviews, mini reviews and perspective, opinion and hypotheses articles that communicate breakthroughs in root biology, as well as recent advances in research technologies and data analysis.


Book
Biotechnology of Hairy Root Systems
Author:
ISBN: 3642390188 3642390196 9783642390180 Year: 2013 Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Victor P. Bulgakov, Yuri N. Shkryl, Galina N. Veremeichik, Tatiana Y. Gorpenchenko and Yuliya V. Vereshchagina: Recent Advances in the Understanding of Agrobacterium rhizogenes-Derived Genes and Their Effects on Stress Resistance and Plant Metabolism. Le Zhao, Guy W. Sander and Jacqueline V. Shanks: Perspectives of the Metabolic Engineering of Terpenoid Indole Alkaloids in Catharanthus roseus Hairy Roots. Jian Wen Wang and Jian Yong Wu: Effective Elicitors and Process Strategies for Enhancement of Secondary Metabolite Production in Hairy Root Cultures. Amanda R. Stiles and Chun-Zhao Liu: Hairy Root Culture: Bioreactor Design and Process Intensification. Marina Skarjinskaia, Karen Ruby, Adriana Araujo, Karina Taylor, Vengadesan Gopalasamy-Raju, Konstantin Musiychuk, Jessica A. Chichester, Gene A. Palmer, Patricia de la Rosa, Vadim Mett, Natalia Ugulava, Stephen J. Streatfield and Vidadi Yusibov: Hairy Roots as a Vaccine Production and Delivery System. Zahwa Al-Shalabi and Pauline M. Doran: Metal Uptake and Nanoparticle Synthesis in Hairy Root Cultures.

Keywords

Roots (Botany) --- Root hairs --- Investigative Techniques --- Biology --- Plant Structures --- Physiological Processes --- Metabolic Phenomena --- Equipment and Supplies --- Biological Science Disciplines --- Analytical, Diagnostic and Therapeutic Techniques and Equipment --- Phenomena and Processes --- Physiological Phenomena --- Anatomy --- Natural Science Disciplines --- Disciplines and Occupations --- Plant Roots --- Metabolism --- Bioreactors --- Growth and Development --- Methods --- Genetics --- Health & Biological Sciences --- Pharmacy, Therapeutics, & Pharmacology --- Microbiology & Immunology --- Research --- Methodological Studies --- Methodological Study --- Procedures --- Studies, Methodological --- Study, Methodological --- Method --- Procedure --- Development and Growth --- Fermentors --- Bioreactor --- Fermentor --- Metabolic Phenomenon --- Metabolic Process --- Metabolism Concepts --- Metabolism Phenomena --- Process, Metabolic --- Processes, Metabolic --- Anabolism --- Catabolism --- Metabolic Concepts --- Metabolic Processes --- Concept, Metabolic --- Concept, Metabolism --- Concepts, Metabolic --- Concepts, Metabolism --- Metabolic Concept --- Metabolism Concept --- Phenomena, Metabolic --- Phenomena, Metabolism --- Phenomenon, Metabolic --- Plant Bulbs --- Plant Root --- Bulb, Plant --- Bulbs, Plant --- Plant Bulb --- Root, Plant --- Roots, Plant --- Natural Sciences --- Physical Sciences --- Discipline, Natural Science --- Disciplines, Natural Science --- Natural Science --- Natural Science Discipline --- Physical Science --- Science, Natural --- Science, Physical --- Sciences, Natural --- Sciences, Physical --- Anatomies --- Physiological Concepts --- Physiological Phenomenon --- Physiological Process --- Concept, Physiological --- Concepts, Physiological --- Phenomena, Physiological --- Phenomenas, Physiological --- Phenomenon, Physiological --- Physiological Concept --- Process, Physiological --- Processes, Physiological --- Biologic Sciences --- Biological Science --- Science, Biological --- Sciences, Biological --- Biological Sciences --- Life Sciences --- Biologic Science --- Biological Science Discipline --- Discipline, Biological Science --- Disciplines, Biological Science --- Life Science --- Science Discipline, Biological --- Science Disciplines, Biological --- Science, Biologic --- Science, Life --- Sciences, Biologic --- Sciences, Life --- Device, Medical --- Devices, Medical --- Equipment --- Inventories --- Medical Device --- Supplies --- Apparatus and Instruments --- Devices --- Medical Devices --- Device --- Instruments and Apparatus --- Inventory --- Supplies and Equipment --- Plant Components --- Component, Plant --- Components, Plant --- Plant Component --- Plant Structure --- Structure, Plant --- Structures, Plant --- Investigative Technics --- Investigative Technic --- Investigative Technique --- Technic, Investigative --- Technics, Investigative --- Technique, Investigative --- Techniques, Investigative --- Medicine. --- Vaccines. --- Biotechnology. --- Plant genetics. --- Biomedicine. --- Vaccine. --- Plant Genetics & Genomics. --- Root hairs. --- Research. --- Plant Genetics and Genomics. --- Plants --- Chemical engineering --- Genetic engineering --- Biologicals


Book
Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Abiotic stress represents the main constraint for agriculture, affecting plant growth and productivity worldwide. Yield losses in agriculture will be potentiated in the future by global warming, increasing contamination, and reduced availability of fertile land. The challenge for agriculture of the present and future is that of increasing the food supply for a continuously growing human population under environmental conditions that are deteriorating in many areas of the world. Minimizing the effects of diverse types of abiotic stresses represents a matter of general concern. Research on all topics related to abiotic stress tolerance, from understanding the stress response mechanisms of plants to developing cultivars and crops tolerant to stress, is a priority. This Special Issue is focused on the physiological and molecular characterization of crop resistance to abiotic stresses, including novel research, reviews, and opinion articles covering all aspects of the responses and mechanisms of plant tolerance to abiotic. Contributions on physiological, biochemical, and molecular studies of crop responses to abiotic stresses; the description and role of stress-responsive genes; marker-assisted screening of stress-tolerant genotypes; genetic engineering; and other biotechnological approaches to improve crop tolerance were considered.

Keywords

silicon --- strawberry --- total antioxidants --- drought --- stress responses --- arbuscular mycorrhizal fungus (AMF) --- Rhizophagus clarus --- flood --- plants --- hormonal homeostasis --- physiological activity --- drought tolerance --- LEA --- Tevang 1 maize --- tobacco --- xylem vessel --- water stress --- root anatomy --- vegetable crops --- stomatal conductance --- canopy temperature --- chlorophyll fluorescence --- SPAD --- common buckwheat --- cotyledon --- root --- drought stress --- transcriptome analysis --- alfalfa --- evaluation --- growth --- heat stress --- physiological traits --- sodium azide --- okra --- waterlogging stress --- antioxidants --- gene expression --- salinity --- sodium --- potassium --- ion homeostasis-transport determinants --- CBL gene family --- Provitamin A --- maize --- morphological --- physiological --- biochemical --- β-carotene --- Capsicum annuum L. --- salt stress --- salicylic acid --- yeast --- proline --- pomegranate --- transcriptome --- tissue-specific --- signaling transduction pathways --- transcription factors --- ultrastructure --- osmotic stress --- wheat --- barley --- summer maize --- female panicle --- Abiotic stress --- climate change --- combined drought and heat stress --- genetic resources --- landrace accessions --- coated-urea fertilizer --- humic acid --- lignosulfonate --- natural polymers --- seaweed extract --- aquaporin --- Brassica rapa --- gas exchange parameters --- root hydraulic conductance --- zinc --- ALA --- abiotic stress --- chlorophyll --- photosynthesis --- antioxidant enzyme --- tomato cultivars --- salinity tolerance --- antioxidant activity --- lycopene --- ascorbic acid --- total polyphenols content --- Capsicum annuum --- root structure --- root hairs --- phosphorus use efficiency --- P-starvation --- macrominerals --- nutrient --- breeding --- eggplant --- wild relative --- vegetative growth --- ion homeostasis --- osmolytes --- oxidative stress --- Phaseolus --- landrace --- seed --- germination --- genetic approach --- sustainable agriculture --- weeds --- natural herbicides --- secondary metabolites --- postemergence --- phytotoxicity --- abiotic stress biomarkers --- bean landraces --- plant breeding --- salt stress tolerance --- water deficit --- water stress tolerance --- tea plant --- cold stress --- chitosan oligosaccharide --- physiological response --- plant growth --- agriculture --- traditions --- pseudo-science --- lunar phases --- physics --- biology --- education --- flooding --- nutrient stress --- ROS


Book
Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Abiotic stress represents the main constraint for agriculture, affecting plant growth and productivity worldwide. Yield losses in agriculture will be potentiated in the future by global warming, increasing contamination, and reduced availability of fertile land. The challenge for agriculture of the present and future is that of increasing the food supply for a continuously growing human population under environmental conditions that are deteriorating in many areas of the world. Minimizing the effects of diverse types of abiotic stresses represents a matter of general concern. Research on all topics related to abiotic stress tolerance, from understanding the stress response mechanisms of plants to developing cultivars and crops tolerant to stress, is a priority. This Special Issue is focused on the physiological and molecular characterization of crop resistance to abiotic stresses, including novel research, reviews, and opinion articles covering all aspects of the responses and mechanisms of plant tolerance to abiotic. Contributions on physiological, biochemical, and molecular studies of crop responses to abiotic stresses; the description and role of stress-responsive genes; marker-assisted screening of stress-tolerant genotypes; genetic engineering; and other biotechnological approaches to improve crop tolerance were considered.

Keywords

Research & information: general --- Biology, life sciences --- silicon --- strawberry --- total antioxidants --- drought --- stress responses --- arbuscular mycorrhizal fungus (AMF) --- Rhizophagus clarus --- flood --- plants --- hormonal homeostasis --- physiological activity --- drought tolerance --- LEA --- Tevang 1 maize --- tobacco --- xylem vessel --- water stress --- root anatomy --- vegetable crops --- stomatal conductance --- canopy temperature --- chlorophyll fluorescence --- SPAD --- common buckwheat --- cotyledon --- root --- drought stress --- transcriptome analysis --- alfalfa --- evaluation --- growth --- heat stress --- physiological traits --- sodium azide --- okra --- waterlogging stress --- antioxidants --- gene expression --- salinity --- sodium --- potassium --- ion homeostasis-transport determinants --- CBL gene family --- Provitamin A --- maize --- morphological --- physiological --- biochemical --- β-carotene --- Capsicum annuum L. --- salt stress --- salicylic acid --- yeast --- proline --- pomegranate --- transcriptome --- tissue-specific --- signaling transduction pathways --- transcription factors --- ultrastructure --- osmotic stress --- wheat --- barley --- summer maize --- female panicle --- Abiotic stress --- climate change --- combined drought and heat stress --- genetic resources --- landrace accessions --- coated-urea fertilizer --- humic acid --- lignosulfonate --- natural polymers --- seaweed extract --- aquaporin --- Brassica rapa --- gas exchange parameters --- root hydraulic conductance --- zinc --- ALA --- abiotic stress --- chlorophyll --- photosynthesis --- antioxidant enzyme --- tomato cultivars --- salinity tolerance --- antioxidant activity --- lycopene --- ascorbic acid --- total polyphenols content --- Capsicum annuum --- root structure --- root hairs --- phosphorus use efficiency --- P-starvation --- macrominerals --- nutrient --- breeding --- eggplant --- wild relative --- vegetative growth --- ion homeostasis --- osmolytes --- oxidative stress --- Phaseolus --- landrace --- seed --- germination --- genetic approach --- sustainable agriculture --- weeds --- natural herbicides --- secondary metabolites --- postemergence --- phytotoxicity --- abiotic stress biomarkers --- bean landraces --- plant breeding --- salt stress tolerance --- water deficit --- water stress tolerance --- tea plant --- cold stress --- chitosan oligosaccharide --- physiological response --- plant growth --- agriculture --- traditions --- pseudo-science --- lunar phases --- physics --- biology --- education --- flooding --- nutrient stress --- ROS --- silicon --- strawberry --- total antioxidants --- drought --- stress responses --- arbuscular mycorrhizal fungus (AMF) --- Rhizophagus clarus --- flood --- plants --- hormonal homeostasis --- physiological activity --- drought tolerance --- LEA --- Tevang 1 maize --- tobacco --- xylem vessel --- water stress --- root anatomy --- vegetable crops --- stomatal conductance --- canopy temperature --- chlorophyll fluorescence --- SPAD --- common buckwheat --- cotyledon --- root --- drought stress --- transcriptome analysis --- alfalfa --- evaluation --- growth --- heat stress --- physiological traits --- sodium azide --- okra --- waterlogging stress --- antioxidants --- gene expression --- salinity --- sodium --- potassium --- ion homeostasis-transport determinants --- CBL gene family --- Provitamin A --- maize --- morphological --- physiological --- biochemical --- β-carotene --- Capsicum annuum L. --- salt stress --- salicylic acid --- yeast --- proline --- pomegranate --- transcriptome --- tissue-specific --- signaling transduction pathways --- transcription factors --- ultrastructure --- osmotic stress --- wheat --- barley --- summer maize --- female panicle --- Abiotic stress --- climate change --- combined drought and heat stress --- genetic resources --- landrace accessions --- coated-urea fertilizer --- humic acid --- lignosulfonate --- natural polymers --- seaweed extract --- aquaporin --- Brassica rapa --- gas exchange parameters --- root hydraulic conductance --- zinc --- ALA --- abiotic stress --- chlorophyll --- photosynthesis --- antioxidant enzyme --- tomato cultivars --- salinity tolerance --- antioxidant activity --- lycopene --- ascorbic acid --- total polyphenols content --- Capsicum annuum --- root structure --- root hairs --- phosphorus use efficiency --- P-starvation --- macrominerals --- nutrient --- breeding --- eggplant --- wild relative --- vegetative growth --- ion homeostasis --- osmolytes --- oxidative stress --- Phaseolus --- landrace --- seed --- germination --- genetic approach --- sustainable agriculture --- weeds --- natural herbicides --- secondary metabolites --- postemergence --- phytotoxicity --- abiotic stress biomarkers --- bean landraces --- plant breeding --- salt stress tolerance --- water deficit --- water stress tolerance --- tea plant --- cold stress --- chitosan oligosaccharide --- physiological response --- plant growth --- agriculture --- traditions --- pseudo-science --- lunar phases --- physics --- biology --- education --- flooding --- nutrient stress --- ROS

Listing 1 - 8 of 8
Sort by