Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Ribonuclease --- Crystal structure --- X-ray --- Ribonuclease --- Crystal structure --- X-ray
Choose an application
Choose an application
This second volume on ribonucleases provides up-to-date, methods-related information on these enzymes. Of particular interest to researchers will be the discussion of artificial and engineered ribonucleases, as well as the application of ribonucleases in medicine and biotechnology.The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with more
Enzymology. --- Ribonucleases. --- RNA. --- Exoribonucleases --- Ribonucleases --- Endoribonucleases --- Esterases --- Exonucleases --- Endonucleases --- Hydrolases --- Enzymes --- Enzymes and Coenzymes --- Chemicals and Drugs --- Nucleases. --- Coenzymes and Enzymes --- Biocatalysts --- Acid Ribonuclease --- Alkaline Ribonuclease --- Ribonuclease --- Nucleases, RNA --- RNase --- RNA Nucleases --- Ribonuclease, Acid --- Ribonuclease, Alkaline --- RNases --- Nucleases --- Molecular Mechanisms of Pharmacological Action --- Biocatalyst --- Enzyme --- Hydrolase --- Esterase
Choose an application
Nucleases --- Deoxyribonuclease --- Ribonuclease --- Phosphatases --- Congresses --- Nucleuses --- Nucleases. --- Congresses. --- Ribonucleases --- Phosphoric Monoester Hydrolases --- DNA Repair. --- DNA Replication. --- Nucleuses - Congresses --- DNA Repair --- DNA Replication --- Recombination, genetic --- Rna
Choose an application
Ribonuclease P (RNaseP), a ribonucleoprotein, is an essential tRNA processing enzyme found in all living organisms. Since its discovery almost 40 years ago, research on RNase P has led to the discovery of the catalytic properties of RNA, and of the only known, naturally occurring RNA enzymes, RNase P catalytic RNA. The description of the catalytic properties of RNA has provided fundamental insight into the RNA world and these catalytic properties are being harnessed as therapeutic and prevention strategies for acquired and inherited diseases. Ribonuclease P is the first book to provide a comprehensive collection covering all aspects of current research on RNase P. The topics include kinetic and structural analysis, mechanism of catalysis, and its regulation and biogenesis in prokaryotes, eukaryotes, and organelles. Furthermore, research progresses on developing RNase P as a potential drug target for antimicrobial development and as a gene-targeting tool for anti-infective and anticancer therapy are also included. This book should be of general interests to molecular biologists and biochemists in both the academic section and pharmaceutical industry.
Gene silencing. --- Ribonucleases. --- RNA. --- Small interfering RNA -- Therapeutic use. --- RNA --- Ribonucleases --- Ribonucleoproteins --- Endoribonucleases --- RNA, Catalytic --- Nucleic Acids --- Ribonuclease P --- Enzymes --- RNA-Binding Proteins --- Nucleic Acids, Nucleotides, and Nucleosides --- Nucleoproteins --- Carrier Proteins --- Chemicals and Drugs --- Enzymes and Coenzymes --- Esterases --- Proteins --- Hydrolases --- Amino Acids, Peptides, and Proteins --- Human Anatomy & Physiology --- Chemistry --- Biochemistry --- Animal Biochemistry --- Physical Sciences & Mathematics --- Health & Biological Sciences --- Proteins. --- Proteids --- RNases --- Life sciences. --- Proteomics. --- Life Sciences. --- Molecular biology --- Biosciences --- Sciences, Life --- Science --- Biomolecules --- Polypeptides --- Proteomics --- Nucleases
Choose an application
Beyond being the most important natural compound source, actinomycetes are the origin of up to two-thirds of all clinically used antibiotics. Currently, new antimicrobials are urgently needed, as infections caused by antibiotic-resistant pathogens are on the rise. In the identification of new antibiotics, many scientists are currently investigating biosynthetic aspects of antibiotic production in actinomycetes. Since the emergence of next-generation sequencing technologies, the field of antibiotics research has experienced a remarkable revival. These bacteria have the potential to produce more antibiotics than previously thought possible. Some antibiotics are produced in standard media, while others require the presence of a specific signaling molecule in the medium. Others, however, are only produced when the native regulation of the biosynthesis gene cluster is overruled. This book covers topics in the field of antibiotic-producing actinomycetes. The following tops are addressed: - Approaches to access novel antibiotic producers for novel natural compounds - Omics and genome mining approaches for the discovery of novel natural compounds - Analyses and genetic engineering of antibiotic biosynthesis - Regulation of the secondary metabolism in actinomycetes
Research & information: general --- Biology, life sciences --- Streptomyces --- biogeography --- comparative genomics --- diversification --- secondary metabolite biosynthetic gene clusters --- SMGC --- natural products --- streptomyces --- rishirilide --- biosynthesis --- polyketides --- polynucleotide phosphorylase --- ribonuclease --- regulation --- promoter --- RNA decay --- polyadenylation --- (p)ppGpp --- antibiotic --- antibiotics --- geomicrobiology --- Illumina sequencing --- microbiome diversity --- Actinobacteria --- Cave microbiology --- secondary metabolite --- rare Actinobacteria --- Amycolatopsis --- unculturability --- siderophore --- glycopeptide antibiotics --- dbv cluster --- regulatory genes --- StrR --- LAL --- LuxR solo --- dalbavancin --- A40926 --- Streptomyces lividans --- secretion pathways --- secretory proteins --- signal peptides --- actinomycetes --- teicoplanin --- van resistance genes --- Streptomyces tsukubaensis --- tacrolimus --- FK506 --- omics --- screening --- secondary metabolism --- differentiation --- elicitors --- morphology --- liquid cultures --- metagenomics --- rare actinomycetes --- dereplication --- metabolomics --- genome mining --- secondary metabolites --- novel compounds --- physicochemical screening --- physical and chemical properties --- structural diversity --- biological activity --- Actinoallomurus --- antibiotics polyethers --- lysolipin --- minimal PKS II --- cyclases --- benz[a]naphthacene quinone --- tridecaketide --- aromatic polyketide --- pentacyclic angular polyphenol --- extended polyketide chain --- actinobacteria --- β-lactamase --- resistance --- β-lactamase inhibitor --- polyketide synthases --- acyltransferases --- engineering --- new bioactive compounds --- symbiosis --- drug discovery --- chemical ecology --- culture-based approaches --- strain --- specialized metabolites --- biosynthetic gene cluster --- n/a
Choose an application
Beyond being the most important natural compound source, actinomycetes are the origin of up to two-thirds of all clinically used antibiotics. Currently, new antimicrobials are urgently needed, as infections caused by antibiotic-resistant pathogens are on the rise. In the identification of new antibiotics, many scientists are currently investigating biosynthetic aspects of antibiotic production in actinomycetes. Since the emergence of next-generation sequencing technologies, the field of antibiotics research has experienced a remarkable revival. These bacteria have the potential to produce more antibiotics than previously thought possible. Some antibiotics are produced in standard media, while others require the presence of a specific signaling molecule in the medium. Others, however, are only produced when the native regulation of the biosynthesis gene cluster is overruled. This book covers topics in the field of antibiotic-producing actinomycetes. The following tops are addressed: - Approaches to access novel antibiotic producers for novel natural compounds - Omics and genome mining approaches for the discovery of novel natural compounds - Analyses and genetic engineering of antibiotic biosynthesis - Regulation of the secondary metabolism in actinomycetes
Streptomyces --- biogeography --- comparative genomics --- diversification --- secondary metabolite biosynthetic gene clusters --- SMGC --- natural products --- streptomyces --- rishirilide --- biosynthesis --- polyketides --- polynucleotide phosphorylase --- ribonuclease --- regulation --- promoter --- RNA decay --- polyadenylation --- (p)ppGpp --- antibiotic --- antibiotics --- geomicrobiology --- Illumina sequencing --- microbiome diversity --- Actinobacteria --- Cave microbiology --- secondary metabolite --- rare Actinobacteria --- Amycolatopsis --- unculturability --- siderophore --- glycopeptide antibiotics --- dbv cluster --- regulatory genes --- StrR --- LAL --- LuxR solo --- dalbavancin --- A40926 --- Streptomyces lividans --- secretion pathways --- secretory proteins --- signal peptides --- actinomycetes --- teicoplanin --- van resistance genes --- Streptomyces tsukubaensis --- tacrolimus --- FK506 --- omics --- screening --- secondary metabolism --- differentiation --- elicitors --- morphology --- liquid cultures --- metagenomics --- rare actinomycetes --- dereplication --- metabolomics --- genome mining --- secondary metabolites --- novel compounds --- physicochemical screening --- physical and chemical properties --- structural diversity --- biological activity --- Actinoallomurus --- antibiotics polyethers --- lysolipin --- minimal PKS II --- cyclases --- benz[a]naphthacene quinone --- tridecaketide --- aromatic polyketide --- pentacyclic angular polyphenol --- extended polyketide chain --- actinobacteria --- β-lactamase --- resistance --- β-lactamase inhibitor --- polyketide synthases --- acyltransferases --- engineering --- new bioactive compounds --- symbiosis --- drug discovery --- chemical ecology --- culture-based approaches --- strain --- specialized metabolites --- biosynthetic gene cluster --- n/a
Choose an application
Beyond being the most important natural compound source, actinomycetes are the origin of up to two-thirds of all clinically used antibiotics. Currently, new antimicrobials are urgently needed, as infections caused by antibiotic-resistant pathogens are on the rise. In the identification of new antibiotics, many scientists are currently investigating biosynthetic aspects of antibiotic production in actinomycetes. Since the emergence of next-generation sequencing technologies, the field of antibiotics research has experienced a remarkable revival. These bacteria have the potential to produce more antibiotics than previously thought possible. Some antibiotics are produced in standard media, while others require the presence of a specific signaling molecule in the medium. Others, however, are only produced when the native regulation of the biosynthesis gene cluster is overruled. This book covers topics in the field of antibiotic-producing actinomycetes. The following tops are addressed: - Approaches to access novel antibiotic producers for novel natural compounds - Omics and genome mining approaches for the discovery of novel natural compounds - Analyses and genetic engineering of antibiotic biosynthesis - Regulation of the secondary metabolism in actinomycetes
Research & information: general --- Biology, life sciences --- Streptomyces --- biogeography --- comparative genomics --- diversification --- secondary metabolite biosynthetic gene clusters --- SMGC --- natural products --- streptomyces --- rishirilide --- biosynthesis --- polyketides --- polynucleotide phosphorylase --- ribonuclease --- regulation --- promoter --- RNA decay --- polyadenylation --- (p)ppGpp --- antibiotic --- antibiotics --- geomicrobiology --- Illumina sequencing --- microbiome diversity --- Actinobacteria --- Cave microbiology --- secondary metabolite --- rare Actinobacteria --- Amycolatopsis --- unculturability --- siderophore --- glycopeptide antibiotics --- dbv cluster --- regulatory genes --- StrR --- LAL --- LuxR solo --- dalbavancin --- A40926 --- Streptomyces lividans --- secretion pathways --- secretory proteins --- signal peptides --- actinomycetes --- teicoplanin --- van resistance genes --- Streptomyces tsukubaensis --- tacrolimus --- FK506 --- omics --- screening --- secondary metabolism --- differentiation --- elicitors --- morphology --- liquid cultures --- metagenomics --- rare actinomycetes --- dereplication --- metabolomics --- genome mining --- secondary metabolites --- novel compounds --- physicochemical screening --- physical and chemical properties --- structural diversity --- biological activity --- Actinoallomurus --- antibiotics polyethers --- lysolipin --- minimal PKS II --- cyclases --- benz[a]naphthacene quinone --- tridecaketide --- aromatic polyketide --- pentacyclic angular polyphenol --- extended polyketide chain --- actinobacteria --- β-lactamase --- resistance --- β-lactamase inhibitor --- polyketide synthases --- acyltransferases --- engineering --- new bioactive compounds --- symbiosis --- drug discovery --- chemical ecology --- culture-based approaches --- strain --- specialized metabolites --- biosynthetic gene cluster --- Streptomyces --- biogeography --- comparative genomics --- diversification --- secondary metabolite biosynthetic gene clusters --- SMGC --- natural products --- streptomyces --- rishirilide --- biosynthesis --- polyketides --- polynucleotide phosphorylase --- ribonuclease --- regulation --- promoter --- RNA decay --- polyadenylation --- (p)ppGpp --- antibiotic --- antibiotics --- geomicrobiology --- Illumina sequencing --- microbiome diversity --- Actinobacteria --- Cave microbiology --- secondary metabolite --- rare Actinobacteria --- Amycolatopsis --- unculturability --- siderophore --- glycopeptide antibiotics --- dbv cluster --- regulatory genes --- StrR --- LAL --- LuxR solo --- dalbavancin --- A40926 --- Streptomyces lividans --- secretion pathways --- secretory proteins --- signal peptides --- actinomycetes --- teicoplanin --- van resistance genes --- Streptomyces tsukubaensis --- tacrolimus --- FK506 --- omics --- screening --- secondary metabolism --- differentiation --- elicitors --- morphology --- liquid cultures --- metagenomics --- rare actinomycetes --- dereplication --- metabolomics --- genome mining --- secondary metabolites --- novel compounds --- physicochemical screening --- physical and chemical properties --- structural diversity --- biological activity --- Actinoallomurus --- antibiotics polyethers --- lysolipin --- minimal PKS II --- cyclases --- benz[a]naphthacene quinone --- tridecaketide --- aromatic polyketide --- pentacyclic angular polyphenol --- extended polyketide chain --- actinobacteria --- β-lactamase --- resistance --- β-lactamase inhibitor --- polyketide synthases --- acyltransferases --- engineering --- new bioactive compounds --- symbiosis --- drug discovery --- chemical ecology --- culture-based approaches --- strain --- specialized metabolites --- biosynthetic gene cluster
Listing 1 - 8 of 8 |
Sort by
|