Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The main objective of polymer materials scientists is to develop and design high performance polymer-based materials via the introduction of block copolymers, ionomers or inorganic-organic hybrids, in order to introduce functionalities such as mechanical reinforcement, gas barrier properties, fire retardancy, shape memory behavior or self-healing ability. In the last ten years, ionic liquids have demonstrated huge potential as new components within polymer-based materials, leading to a wide range of applications. Due to their many physical-chemical properties, as well as their various possible combinations, ionic liquids represent a new path to produce multifunctional materials.
History of engineering & technology --- ionic liquids --- thermosets --- Lithium salts --- electrolytes --- polyoxymethylene --- ionic liquid --- crystallization behavior --- nucleation --- polymerizable ionic liquid microemulsions --- poly(ionic liquid)s --- adsorption --- poly(ionic liquid) --- cross-linker --- electrochemical detection --- 4-nonylphenol --- poly (butylene adipate-co-terephthalate) --- layered double hydroxide --- in-situ polymerization --- nanocomposite --- permeability --- biodegradable polymer --- IR spectroscopy --- silica --- high pressure --- microwave --- synthetic methods --- nanomaterials --- polymers --- humidity sensing --- free-ion concentration --- fast response and recovery --- respiratory rate monitoring --- PMMA --- plasticizer --- mechanical behavior --- crazing --- thermal behavior
Choose an application
The main objective of polymer materials scientists is to develop and design high performance polymer-based materials via the introduction of block copolymers, ionomers or inorganic-organic hybrids, in order to introduce functionalities such as mechanical reinforcement, gas barrier properties, fire retardancy, shape memory behavior or self-healing ability. In the last ten years, ionic liquids have demonstrated huge potential as new components within polymer-based materials, leading to a wide range of applications. Due to their many physical-chemical properties, as well as their various possible combinations, ionic liquids represent a new path to produce multifunctional materials.
ionic liquids --- thermosets --- Lithium salts --- electrolytes --- polyoxymethylene --- ionic liquid --- crystallization behavior --- nucleation --- polymerizable ionic liquid microemulsions --- poly(ionic liquid)s --- adsorption --- poly(ionic liquid) --- cross-linker --- electrochemical detection --- 4-nonylphenol --- poly (butylene adipate-co-terephthalate) --- layered double hydroxide --- in-situ polymerization --- nanocomposite --- permeability --- biodegradable polymer --- IR spectroscopy --- silica --- high pressure --- microwave --- synthetic methods --- nanomaterials --- polymers --- humidity sensing --- free-ion concentration --- fast response and recovery --- respiratory rate monitoring --- PMMA --- plasticizer --- mechanical behavior --- crazing --- thermal behavior
Choose an application
The main objective of polymer materials scientists is to develop and design high performance polymer-based materials via the introduction of block copolymers, ionomers or inorganic-organic hybrids, in order to introduce functionalities such as mechanical reinforcement, gas barrier properties, fire retardancy, shape memory behavior or self-healing ability. In the last ten years, ionic liquids have demonstrated huge potential as new components within polymer-based materials, leading to a wide range of applications. Due to their many physical-chemical properties, as well as their various possible combinations, ionic liquids represent a new path to produce multifunctional materials.
History of engineering & technology --- ionic liquids --- thermosets --- Lithium salts --- electrolytes --- polyoxymethylene --- ionic liquid --- crystallization behavior --- nucleation --- polymerizable ionic liquid microemulsions --- poly(ionic liquid)s --- adsorption --- poly(ionic liquid) --- cross-linker --- electrochemical detection --- 4-nonylphenol --- poly (butylene adipate-co-terephthalate) --- layered double hydroxide --- in-situ polymerization --- nanocomposite --- permeability --- biodegradable polymer --- IR spectroscopy --- silica --- high pressure --- microwave --- synthetic methods --- nanomaterials --- polymers --- humidity sensing --- free-ion concentration --- fast response and recovery --- respiratory rate monitoring --- PMMA --- plasticizer --- mechanical behavior --- crazing --- thermal behavior
Listing 1 - 3 of 3 |
Sort by
|