Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Surface-enhanced Raman scattering (SERS) is a research technique that was discovered in the mid-1970s. SERS is a powerful and fast tool for analysis, which has a high detection sensitivity for a great number of chemical and biological molecules. However, it is in this last decade that a very significant explosion of the fabrication of highly sensitive SERS substrates has occurred using novel designs of plasmonic nanostructures and novel fabrication techniques of the latter, as well as new plasmonic materials and hybrid nanomaterials. Thus, this Special Issue is dedicated to reporting on the latest advances in novel plasmonic nanomaterials that are applied to the SERS domain. These developments are illustrated through several articles and reviews written by researchers in this field from around the world.
Research & information: general --- pulsed laser ablation --- acetonitrile (CH3CN) --- Cu/gCN hybrids --- localized surface plasmon resonance (LSPR) --- surface enhanced Raman scattering (SERS) --- surface enhanced resonance Raman scattering (SERRS) --- silver aggregates --- laser-induced synthesis --- surface-enhanced Raman scattering --- hot spots --- SERS --- sensors --- plasmonics --- gold --- silicon --- surface-enhanced Raman scattering (SERS) --- surface plasmon polariton (SPP) --- surface plasmon resonance (SPR) --- nanograting --- nanofabrication --- electron beam lithography --- zinc oxide --- metal oxides --- self-assembly --- bimetallic nanoparticles --- localized surface plasmon --- surface enhanced Raman scattering --- grating effect --- gold nanodisks --- Rayleigh anomaly --- pulsed laser ablation --- acetonitrile (CH3CN) --- Cu/gCN hybrids --- localized surface plasmon resonance (LSPR) --- surface enhanced Raman scattering (SERS) --- surface enhanced resonance Raman scattering (SERRS) --- silver aggregates --- laser-induced synthesis --- surface-enhanced Raman scattering --- hot spots --- SERS --- sensors --- plasmonics --- gold --- silicon --- surface-enhanced Raman scattering (SERS) --- surface plasmon polariton (SPP) --- surface plasmon resonance (SPR) --- nanograting --- nanofabrication --- electron beam lithography --- zinc oxide --- metal oxides --- self-assembly --- bimetallic nanoparticles --- localized surface plasmon --- surface enhanced Raman scattering --- grating effect --- gold nanodisks --- Rayleigh anomaly
Choose an application
Surface-enhanced Raman scattering (SERS) is a research technique that was discovered in the mid-1970s. SERS is a powerful and fast tool for analysis, which has a high detection sensitivity for a great number of chemical and biological molecules. However, it is in this last decade that a very significant explosion of the fabrication of highly sensitive SERS substrates has occurred using novel designs of plasmonic nanostructures and novel fabrication techniques of the latter, as well as new plasmonic materials and hybrid nanomaterials. Thus, this Special Issue is dedicated to reporting on the latest advances in novel plasmonic nanomaterials that are applied to the SERS domain. These developments are illustrated through several articles and reviews written by researchers in this field from around the world.
pulsed laser ablation --- acetonitrile (CH3CN) --- Cu/gCN hybrids --- localized surface plasmon resonance (LSPR) --- surface enhanced Raman scattering (SERS) --- surface enhanced resonance Raman scattering (SERRS) --- silver aggregates --- laser-induced synthesis --- surface-enhanced Raman scattering --- hot spots --- SERS --- sensors --- plasmonics --- gold --- silicon --- surface-enhanced Raman scattering (SERS) --- surface plasmon polariton (SPP) --- surface plasmon resonance (SPR) --- nanograting --- nanofabrication --- electron beam lithography --- zinc oxide --- metal oxides --- self-assembly --- bimetallic nanoparticles --- localized surface plasmon --- surface enhanced Raman scattering --- grating effect --- gold nanodisks --- Rayleigh anomaly --- n/a
Choose an application
Surface-enhanced Raman scattering (SERS) is a research technique that was discovered in the mid-1970s. SERS is a powerful and fast tool for analysis, which has a high detection sensitivity for a great number of chemical and biological molecules. However, it is in this last decade that a very significant explosion of the fabrication of highly sensitive SERS substrates has occurred using novel designs of plasmonic nanostructures and novel fabrication techniques of the latter, as well as new plasmonic materials and hybrid nanomaterials. Thus, this Special Issue is dedicated to reporting on the latest advances in novel plasmonic nanomaterials that are applied to the SERS domain. These developments are illustrated through several articles and reviews written by researchers in this field from around the world.
Research & information: general --- pulsed laser ablation --- acetonitrile (CH3CN) --- Cu/gCN hybrids --- localized surface plasmon resonance (LSPR) --- surface enhanced Raman scattering (SERS) --- surface enhanced resonance Raman scattering (SERRS) --- silver aggregates --- laser-induced synthesis --- surface-enhanced Raman scattering --- hot spots --- SERS --- sensors --- plasmonics --- gold --- silicon --- surface-enhanced Raman scattering (SERS) --- surface plasmon polariton (SPP) --- surface plasmon resonance (SPR) --- nanograting --- nanofabrication --- electron beam lithography --- zinc oxide --- metal oxides --- self-assembly --- bimetallic nanoparticles --- localized surface plasmon --- surface enhanced Raman scattering --- grating effect --- gold nanodisks --- Rayleigh anomaly --- n/a
Choose an application
The book “Surface Treatment by Laser-Assisted Techniques” presents state-of-the-art research applications of lasers for surface modification. Applications in a broad spectrum of fields are presented: the aircraft and automotive sector, the manufacturing industry, sensor development, electronics, biomedical engineering, or the energy sector. Several radiation sources are included, from pulsed lasers in the visible and near-infrared regions to continuous-wave mid-infrared laser sources. The different chapters of the book “Surface Treatment by Laser-Assisted Techniques” cover laser texturing at nanoscale and microscale for modification of hydrophobicity, hydrophilicity, and ice nucleation; the production of palladium, platinum and silver nanoparticles for sensor applications; the texturization of composite bioceramics for improved fixation in bone prosthesis; the surface texturization of natural ceramic materials by scanned laser radiation; the laser ablation of interfaces to enhance adhesion in dissimilar joints; the analysis of material thermoelastic response; and the production of highly polished topographies in pulsed laser surface modification. Moreover, the production of high-entropy alloy/diamond composite coatings, the modellization of the gas-powder injection, and the generation of thermal barrier coatings by laser cladding are reported in the last chapters of this book.
Engineering --- Technology --- Pd --- Pt --- FTO --- laser irradiations --- dewetting --- nanoparticles --- surface treatment --- CO2 laser --- scanning system --- granite stone --- dual-beam --- beam shaper --- MPFV method --- laser polishing --- zigzag-square wave --- bioceramics --- laser ablation --- roughness --- composites --- hip joint prosthesis --- cementless cup --- bone --- silver nanoparticles --- electrophoretic deposition --- pulsed laser ablation in liquid --- laser welding --- metal-polymer --- thermal contact resistance --- generalized thermoelasticity --- laser radiation --- volumetric absorption --- thermal stresses --- cooling effect --- laser cladding --- diamond composite coating --- high entropy alloy --- high scanning speed --- wear resistance --- laser-cladding --- La2Zr2O7 thermal barrier coating --- Ni-based superalloy --- high temperature oxidation --- thermal shock --- extreme high-speed laser material deposition (EHLA) --- laser material deposition (LMD) --- coaxial powder nozzle --- coating --- additive manufacturing --- numerical simulation --- hydrothermal treatment --- micro/nano-hierarchical structures --- wetting model --- anti-icing --- History. --- History. --- Pd --- Pt --- FTO --- laser irradiations --- dewetting --- nanoparticles --- surface treatment --- CO2 laser --- scanning system --- granite stone --- dual-beam --- beam shaper --- MPFV method --- laser polishing --- zigzag-square wave --- bioceramics --- laser ablation --- roughness --- composites --- hip joint prosthesis --- cementless cup --- bone --- silver nanoparticles --- electrophoretic deposition --- pulsed laser ablation in liquid --- laser welding --- metal-polymer --- thermal contact resistance --- generalized thermoelasticity --- laser radiation --- volumetric absorption --- thermal stresses --- cooling effect --- laser cladding --- diamond composite coating --- high entropy alloy --- high scanning speed --- wear resistance --- laser-cladding --- La2Zr2O7 thermal barrier coating --- Ni-based superalloy --- high temperature oxidation --- thermal shock --- extreme high-speed laser material deposition (EHLA) --- laser material deposition (LMD) --- coaxial powder nozzle --- coating --- additive manufacturing --- numerical simulation --- hydrothermal treatment --- micro/nano-hierarchical structures --- wetting model --- anti-icing
Choose an application
The book “Surface Treatment by Laser-Assisted Techniques” presents state-of-the-art research applications of lasers for surface modification. Applications in a broad spectrum of fields are presented: the aircraft and automotive sector, the manufacturing industry, sensor development, electronics, biomedical engineering, or the energy sector. Several radiation sources are included, from pulsed lasers in the visible and near-infrared regions to continuous-wave mid-infrared laser sources. The different chapters of the book “Surface Treatment by Laser-Assisted Techniques” cover laser texturing at nanoscale and microscale for modification of hydrophobicity, hydrophilicity, and ice nucleation; the production of palladium, platinum and silver nanoparticles for sensor applications; the texturization of composite bioceramics for improved fixation in bone prosthesis; the surface texturization of natural ceramic materials by scanned laser radiation; the laser ablation of interfaces to enhance adhesion in dissimilar joints; the analysis of material thermoelastic response; and the production of highly polished topographies in pulsed laser surface modification. Moreover, the production of high-entropy alloy/diamond composite coatings, the modellization of the gas-powder injection, and the generation of thermal barrier coatings by laser cladding are reported in the last chapters of this book.
History of engineering & technology --- Pd --- Pt --- FTO --- laser irradiations --- dewetting --- nanoparticles --- surface treatment --- CO2 laser --- scanning system --- granite stone --- dual-beam --- beam shaper --- MPFV method --- laser polishing --- zigzag-square wave --- bioceramics --- laser ablation --- roughness --- composites --- hip joint prosthesis --- cementless cup --- bone --- silver nanoparticles --- electrophoretic deposition --- pulsed laser ablation in liquid --- laser welding --- metal–polymer --- thermal contact resistance --- generalized thermoelasticity --- laser radiation --- volumetric absorption --- thermal stresses --- cooling effect --- laser cladding --- diamond composite coating --- high entropy alloy --- high scanning speed --- wear resistance --- laser-cladding --- La2Zr2O7 thermal barrier coating --- Ni-based superalloy --- high temperature oxidation --- thermal shock --- extreme high-speed laser material deposition (EHLA) --- laser material deposition (LMD) --- coaxial powder nozzle --- coating --- additive manufacturing --- numerical simulation --- hydrothermal treatment --- micro/nano-hierarchical structures --- wetting model --- anti-icing --- n/a --- metal-polymer --- Engineering --- Technology --- History.
Choose an application
The book “Surface Treatment by Laser-Assisted Techniques” presents state-of-the-art research applications of lasers for surface modification. Applications in a broad spectrum of fields are presented: the aircraft and automotive sector, the manufacturing industry, sensor development, electronics, biomedical engineering, or the energy sector. Several radiation sources are included, from pulsed lasers in the visible and near-infrared regions to continuous-wave mid-infrared laser sources. The different chapters of the book “Surface Treatment by Laser-Assisted Techniques” cover laser texturing at nanoscale and microscale for modification of hydrophobicity, hydrophilicity, and ice nucleation; the production of palladium, platinum and silver nanoparticles for sensor applications; the texturization of composite bioceramics for improved fixation in bone prosthesis; the surface texturization of natural ceramic materials by scanned laser radiation; the laser ablation of interfaces to enhance adhesion in dissimilar joints; the analysis of material thermoelastic response; and the production of highly polished topographies in pulsed laser surface modification. Moreover, the production of high-entropy alloy/diamond composite coatings, the modellization of the gas-powder injection, and the generation of thermal barrier coatings by laser cladding are reported in the last chapters of this book.
Pd --- Pt --- FTO --- laser irradiations --- dewetting --- nanoparticles --- surface treatment --- CO2 laser --- scanning system --- granite stone --- dual-beam --- beam shaper --- MPFV method --- laser polishing --- zigzag-square wave --- bioceramics --- laser ablation --- roughness --- composites --- hip joint prosthesis --- cementless cup --- bone --- silver nanoparticles --- electrophoretic deposition --- pulsed laser ablation in liquid --- laser welding --- metal–polymer --- thermal contact resistance --- generalized thermoelasticity --- laser radiation --- volumetric absorption --- thermal stresses --- cooling effect --- laser cladding --- diamond composite coating --- high entropy alloy --- high scanning speed --- wear resistance --- laser-cladding --- La2Zr2O7 thermal barrier coating --- Ni-based superalloy --- high temperature oxidation --- thermal shock --- extreme high-speed laser material deposition (EHLA) --- laser material deposition (LMD) --- coaxial powder nozzle --- coating --- additive manufacturing --- numerical simulation --- hydrothermal treatment --- micro/nano-hierarchical structures --- wetting model --- anti-icing --- n/a --- metal-polymer --- Engineering --- Technology --- History.
Listing 1 - 6 of 6 |
Sort by
|