Listing 1 - 2 of 2 |
Sort by
|
Choose an application
This book focuses on the recent development of forecasting and risk management techniques for electricity markets. In addition, we discuss research on new trading platforms and environments using blockchain-based peer-to-peer (P2P) markets and computer agents. The book consists of two parts. The first part is entitled “Forecasting and Risk Management Techniques” and contains five chapters related to weather and electricity derivatives, and load and price forecasting for supporting electricity trading. The second part is entitled “Peer-to-Peer (P2P) Electricity Trading System and Strategy” and contains the following five chapters related to the feasibility and enhancement of P2P energy trading from various aspects.
Technology: general issues --- History of engineering & technology --- electricity markets --- non-parametric regression --- minimum variance hedge --- spline basis functions --- cyclic cubic spline --- weather derivatives --- n/a --- distributed energy resources (DER) --- P2P energy trading --- cooperative mechanism --- renewable energy --- multi agent system --- blockchain --- cashflow management of electricity businesses --- electricity derivatives and forwards --- retailers and power producers --- solar power and thermal energy --- optimal hedging using nonparametric techniques --- empirical simulations --- peer-to-peer energy trading --- distributed energy resources --- microgrid --- digital grid --- bidding strategy --- electricity price --- electricity load --- electricity price forecasting --- wind energy --- day-ahead market --- intra-day market --- balancing power market --- peer to peer energy market --- hardware control --- demonstration experiment --- home energy management systems --- electric vehicles --- bidding agent --- electric vehicle --- functional autoregressive model --- functional principle component analysis --- vector autoregressive model --- functional final prediction error (FFPE) --- naive method --- P2P electricity market --- market maker --- liquidity --- price fluctuation --- artificial market simulation
Choose an application
This book focuses on the fundamental and applied research of the non-destructive estimation and diagnosis of crop leaf and plant nitrogen status and in-season nitrogen management strategies based on leaf sensors, proximal canopy sensors, unmanned aerial vehicle remote sensing, manned aerial remote sensing and satellite remote sensing technologies. Statistical and machine learning methods are used to predict plant-nitrogen-related parameters with sensor data or sensor data together with soil, landscape, weather and/or management information. Different sensing technologies or different modelling approaches are compared and evaluated. Strategies are developed to use crop sensing data for in-season nitrogen recommendations to improve nitrogen use efficiency and protect the environment.
Technology: general issues --- History of engineering & technology --- Environmental science, engineering & technology --- UAS --- multiple sensors --- vegetation index --- leaf nitrogen accumulation --- plant nitrogen accumulation --- pasture quality --- airborne hyperspectral imaging --- random forest regression --- sun-induced chlorophyll fluorescence (SIF) --- SIF yield indices --- upward --- downward --- leaf nitrogen concentration (LNC) --- wheat (Triticum aestivum L.) --- laser-induced fluorescence --- leaf nitrogen concentration --- back-propagation neural network --- principal component analysis --- fluorescence characteristics --- canopy nitrogen density --- radiative transfer model --- hyperspectral --- winter wheat --- flooded rice --- pig slurry --- aerial remote sensing --- vegetation indices --- N recommendation approach --- Mediterranean conditions --- nitrogen --- vertical distribution --- plant geometry --- remote sensing --- maize --- UAV --- multispectral imagery --- LNC --- non-parametric regression --- red-edge --- NDRE --- dynamic change model --- sigmoid curve --- grain yield prediction --- leaf chlorophyll content --- red-edge reflectance --- spectral index --- precision N fertilization --- chlorophyll meter --- NDVI --- NNI --- canopy reflectance sensing --- N mineralization --- farmyard manures --- Triticum aestivum --- discrete wavelet transform --- partial least squares --- hyper-spectra --- rice --- nitrogen management --- reflectance index --- multiple variable linear regression --- Lasso model --- Multiplex®3 sensor --- nitrogen balance index --- nitrogen nutrition index --- nitrogen status diagnosis --- precision nitrogen management --- terrestrial laser scanning --- spectrometer --- plant height --- biomass --- nitrogen concentration --- precision agriculture --- unmanned aerial vehicle (UAV) --- digital camera --- leaf chlorophyll concentration --- portable chlorophyll meter --- crop --- PROSPECT-D --- sensitivity analysis --- UAV multispectral imagery --- spectral vegetation indices --- machine learning --- plant nutrition --- canopy spectrum --- non-destructive nitrogen status diagnosis --- drone --- multispectral camera --- SPAD --- smartphone photography --- fixed-wing UAV remote sensing --- random forest --- canopy reflectance --- crop N status --- Capsicum annuum --- proximal optical sensors --- Dualex sensor --- leaf position --- proximal sensing --- cross-validation --- feature selection --- hyperparameter tuning --- image processing --- image segmentation --- nitrogen fertilizer recommendation --- supervised regression --- RapidSCAN sensor --- nitrogen recommendation algorithm --- in-season nitrogen management --- nitrogen use efficiency --- yield potential --- yield responsiveness --- standard normal variate (SNV) --- continuous wavelet transform (CWT) --- wavelet features optimization --- competitive adaptive reweighted sampling (CARS) --- partial least square (PLS) --- grapevine --- hyperparameter optimization --- multispectral imaging --- precision viticulture --- RGB --- multispectral --- coverage adjusted spectral index --- vegetation coverage --- random frog algorithm --- active canopy sensing --- integrated sensing system --- discrete NIR spectral band data --- soil total nitrogen concentration --- moisture absorption correction index --- particle size correction index --- coupled elimination
Listing 1 - 2 of 2 |
Sort by
|