Listing 1 - 3 of 3 |
Sort by
|
Choose an application
This book highlights novel nano-engineering advances that enable enhanced bone formation at the implant/biomaterial and bone tissue interface, towards bone tissue engineering applications. Spanning a variety of biomaterial categories, from nanofibrous scaffolds (natural and synthetic) to the nanoscale modification of metallic implants, novel bioactive and therapeutic modifications have made it possible to enhance new bone formation, which could be particularly useful for the management of compromised sites.
Technology: general issues --- History of engineering & technology --- human tooth powder --- bioceramics --- biocompatibility --- bone regeneration --- vascularization --- nano-composite --- microstructure --- nanoindentation --- bone implants --- powder metallurgy --- calcium orthophosphates --- nano-hydroxyapatite --- eggshell --- cuttlefish bone --- mussel shell --- amorphous calcium carbonate --- hydrogel --- tissue engineering --- biphasic calcium phosphate nanoparticle (BCP-NP) --- biodegradable --- gelatin methacryloyl (GelMA) --- visible light --- inorganic nanomaterials --- nano hydroxyapatites --- nano silica --- metallic nanomaterials --- magnesium and its alloys --- hydroxyapatite --- surface modifications --- titanium implants --- corrosion analysis --- bioactivity --- biomaterial --- bone substitute --- apatite --- microwave-assisted hydrothermal synthesis --- microgeometry --- mechanobiology --- global DNA methylation --- osteoblast mechanosensing --- human tooth powder --- bioceramics --- biocompatibility --- bone regeneration --- vascularization --- nano-composite --- microstructure --- nanoindentation --- bone implants --- powder metallurgy --- calcium orthophosphates --- nano-hydroxyapatite --- eggshell --- cuttlefish bone --- mussel shell --- amorphous calcium carbonate --- hydrogel --- tissue engineering --- biphasic calcium phosphate nanoparticle (BCP-NP) --- biodegradable --- gelatin methacryloyl (GelMA) --- visible light --- inorganic nanomaterials --- nano hydroxyapatites --- nano silica --- metallic nanomaterials --- magnesium and its alloys --- hydroxyapatite --- surface modifications --- titanium implants --- corrosion analysis --- bioactivity --- biomaterial --- bone substitute --- apatite --- microwave-assisted hydrothermal synthesis --- microgeometry --- mechanobiology --- global DNA methylation --- osteoblast mechanosensing
Choose an application
This book highlights novel nano-engineering advances that enable enhanced bone formation at the implant/biomaterial and bone tissue interface, towards bone tissue engineering applications. Spanning a variety of biomaterial categories, from nanofibrous scaffolds (natural and synthetic) to the nanoscale modification of metallic implants, novel bioactive and therapeutic modifications have made it possible to enhance new bone formation, which could be particularly useful for the management of compromised sites.
human tooth powder --- bioceramics --- biocompatibility --- bone regeneration --- vascularization --- nano-composite --- microstructure --- nanoindentation --- bone implants --- powder metallurgy --- calcium orthophosphates --- nano-hydroxyapatite --- eggshell --- cuttlefish bone --- mussel shell --- amorphous calcium carbonate --- hydrogel --- tissue engineering --- biphasic calcium phosphate nanoparticle (BCP-NP) --- biodegradable --- gelatin methacryloyl (GelMA) --- visible light --- inorganic nanomaterials --- nano hydroxyapatites --- nano silica --- metallic nanomaterials --- magnesium and its alloys --- hydroxyapatite --- surface modifications --- titanium implants --- corrosion analysis --- bioactivity --- biomaterial --- bone substitute --- apatite --- microwave-assisted hydrothermal synthesis --- microgeometry --- mechanobiology --- global DNA methylation --- osteoblast mechanosensing --- n/a
Choose an application
This book highlights novel nano-engineering advances that enable enhanced bone formation at the implant/biomaterial and bone tissue interface, towards bone tissue engineering applications. Spanning a variety of biomaterial categories, from nanofibrous scaffolds (natural and synthetic) to the nanoscale modification of metallic implants, novel bioactive and therapeutic modifications have made it possible to enhance new bone formation, which could be particularly useful for the management of compromised sites.
Technology: general issues --- History of engineering & technology --- human tooth powder --- bioceramics --- biocompatibility --- bone regeneration --- vascularization --- nano-composite --- microstructure --- nanoindentation --- bone implants --- powder metallurgy --- calcium orthophosphates --- nano-hydroxyapatite --- eggshell --- cuttlefish bone --- mussel shell --- amorphous calcium carbonate --- hydrogel --- tissue engineering --- biphasic calcium phosphate nanoparticle (BCP-NP) --- biodegradable --- gelatin methacryloyl (GelMA) --- visible light --- inorganic nanomaterials --- nano hydroxyapatites --- nano silica --- metallic nanomaterials --- magnesium and its alloys --- hydroxyapatite --- surface modifications --- titanium implants --- corrosion analysis --- bioactivity --- biomaterial --- bone substitute --- apatite --- microwave-assisted hydrothermal synthesis --- microgeometry --- mechanobiology --- global DNA methylation --- osteoblast mechanosensing --- n/a
Listing 1 - 3 of 3 |
Sort by
|