Listing 1 - 10 of 22 | << page >> |
Sort by
|
Choose an application
The United Kingdom has a proud history of liquid crystal research. Its contributions span from the formulation of the theory of nematic elasticity as it is used today, uncovered via the Leslie–Erickson theory describing the viscosity of mesophases, to the discovery of the first room-temperature nematic and the related developments in the display industry, to name just several pioneering contributions. Today, liquid crystal science in the UK is more diverse and multidisciplinary than ever, ranging from the synthesis of increasingly complex mesogenic molecules, via the physical properties of self-organised systems and composites of both the thermotropic and the lyotropic type, to a wide variety of applications outside of the traditional display sector. The field covers aspects of chemistry, physics, material sciences, chemical engineering, mathematics, biology and device engineering in an overarching effort to advance the fundamental understanding of these soft-matter materials and to promote their technological exploitation in the UK and worldwide. To this end, a large group of individuals and research groups from universities and industry in the UK are working together on a Special Issue to advance the development of this field. The achievements of these scholars can be found in publications in top-class journals and presentations at all large international conferences, in the development of new products, and in events for public engagement.
Technology: general issues --- History of engineering & technology --- Materials science --- liquid crystal --- soliton --- toron --- skyrmion --- nematic --- cholesteric --- smectic --- micro-cargo transport --- dissipative dynamics --- twist-bend phase --- liquid crystals --- molecular simulation --- molecular dynamics --- dissipative particle dynamics --- ferroelectric materials --- smectic liquid crystals --- electrocaloric effect --- ferroelectric --- birefringence --- dielectrics --- chirality --- polymer --- cholesterol --- block copolymer --- self-assembly --- polymerisation-induced self-assembly --- Hartshorne --- Bouligand --- optical textures --- developable domains --- columnar hexagonal phases --- liquid crystal dimers --- intercalated --- interdigitated --- twist-bend nematic --- twist-bend smectic --- resonant soft X-ray scattering --- topological defects --- nematic liquid crystals --- gratings --- defect dynamics --- bistability --- LCD --- ZBD --- direct laser writing --- diffraction gratings --- stretchability --- n/a
Choose an application
This Special Issue concerns the development of a theory for energy conversion on the nanoscale, namely, nanothermodynamics. The theory has been applied to porous media, small surfaces, clusters or fluids under confinement. The number of unsolved issues in these contexts is numerous and the present efforts are only painting part of the broader picture. We attempt to answer the following: How far down in scale does the Gibbs equation apply? Which theory can replace it beyond the thermodynamic limit? It is well known that confinement changes the equation of state of a fluid, but how does confinement change the equilibrium conditions themselves? This Special Issue explores some of the roads that were opened up for us by Hill with the idea of nanothermodynamics. The experimental progress in nanotechnology is advancing rapidly. It is our ambition with this book to inspire an increased effort in the development of suitable theoretical tools and methods to help further progress in nanoscience. All ten contributions to this Special Issue can be seen as efforts to support, enhance and validate the theoretical foundation of Hill.
Technology: general issues --- nanothermodynamics --- porous systems --- molecular simulation --- differential pressure --- integral pressure --- pressure --- confinement --- equilibrium --- thermodynamic --- small-system --- hills-thermodynamics --- pore --- nanopore --- interface --- Kirkwood-Buff integrals --- surface effects --- molecular dynamics --- activated carbon --- high-pressure methane adsorption --- thermodynamics of adsorption systems --- small system method --- thermodynamics of small systems --- hydration shell thermodynamics --- finite size correction --- adsorption --- thin film --- size-dependent --- thermodynamics --- spreading pressure --- entropy of adsorption --- polymers --- single-molecule stretching --- thermodynamics at strong coupling --- temperature-dependent energy levels --- Hill’s thermodynamics of small systems --- porous media --- statistical mechanics --- ideal gas --- nanoparticles --- n/a --- Hill's thermodynamics of small systems
Choose an application
This reprint is a compilation of nine papers published in Processes, in a Special Issue on “Modeling and Simulation of Polymerization Processes”. It aimed to address both new findings on basic topics and the modeling of the emerging aspects of product design and polymerization processes. It provides a nice view of the state of the art with regard to the modeling and simulation of polymerization processes. The use of well-established methods (e.g., the method of moments) and relatively more recent modeling approaches (e.g., Monte Carlo stochastic modeling) to describe polymerization processes of long-standing interest in industry (e.g., rubber emulsion polymerization) to polymerization systems of more modern interest (e.g., RDRP and plastic pyrolysis processes) are comprehensively covered in the papers contained in this reprint.
Technology: general issues --- Chemical engineering --- dithiolactones --- RAFT polymerization --- kinetic modeling --- vinyl monomers --- methyl methacrylate --- polystyrene --- thermal pyrolysis --- nitroxide mediated polymerization --- mathematical modeling --- Poly(acrylic acid) --- free-radical polymerization --- reaction model --- process intensification --- semi-batch to continuous --- initiator feeding policies --- styrene --- Monte Carlo simulation --- polymer microstructure --- aqueous phase polymerization --- polyelectrolytes --- radical polymerization --- modeling and simulation --- emulsion polymerization --- styrene–butadiene rubber --- nitrile rubber --- ethylene polymerization --- metallocene --- zirconium-based catalyst --- organoboron compounds --- polymer grafting --- polymer synthesis --- polymer characterization --- polymer reaction engineering --- reversible deactivation radical polymerization --- nano-SiO2 --- silane coupling agent --- thermal stability --- mechanical parameter --- molecular simulation --- n/a --- styrene-butadiene rubber
Choose an application
This Special Issue concerns the development of a theory for energy conversion on the nanoscale, namely, nanothermodynamics. The theory has been applied to porous media, small surfaces, clusters or fluids under confinement. The number of unsolved issues in these contexts is numerous and the present efforts are only painting part of the broader picture. We attempt to answer the following: How far down in scale does the Gibbs equation apply? Which theory can replace it beyond the thermodynamic limit? It is well known that confinement changes the equation of state of a fluid, but how does confinement change the equilibrium conditions themselves? This Special Issue explores some of the roads that were opened up for us by Hill with the idea of nanothermodynamics. The experimental progress in nanotechnology is advancing rapidly. It is our ambition with this book to inspire an increased effort in the development of suitable theoretical tools and methods to help further progress in nanoscience. All ten contributions to this Special Issue can be seen as efforts to support, enhance and validate the theoretical foundation of Hill.
nanothermodynamics --- porous systems --- molecular simulation --- differential pressure --- integral pressure --- pressure --- confinement --- equilibrium --- thermodynamic --- small-system --- hills-thermodynamics --- pore --- nanopore --- interface --- Kirkwood-Buff integrals --- surface effects --- molecular dynamics --- activated carbon --- high-pressure methane adsorption --- thermodynamics of adsorption systems --- small system method --- thermodynamics of small systems --- hydration shell thermodynamics --- finite size correction --- adsorption --- thin film --- size-dependent --- thermodynamics --- spreading pressure --- entropy of adsorption --- polymers --- single-molecule stretching --- thermodynamics at strong coupling --- temperature-dependent energy levels --- Hill’s thermodynamics of small systems --- porous media --- statistical mechanics --- ideal gas --- nanoparticles --- n/a --- Hill's thermodynamics of small systems
Choose an application
This reprint is a compilation of nine papers published in Processes, in a Special Issue on “Modeling and Simulation of Polymerization Processes”. It aimed to address both new findings on basic topics and the modeling of the emerging aspects of product design and polymerization processes. It provides a nice view of the state of the art with regard to the modeling and simulation of polymerization processes. The use of well-established methods (e.g., the method of moments) and relatively more recent modeling approaches (e.g., Monte Carlo stochastic modeling) to describe polymerization processes of long-standing interest in industry (e.g., rubber emulsion polymerization) to polymerization systems of more modern interest (e.g., RDRP and plastic pyrolysis processes) are comprehensively covered in the papers contained in this reprint.
dithiolactones --- RAFT polymerization --- kinetic modeling --- vinyl monomers --- methyl methacrylate --- polystyrene --- thermal pyrolysis --- nitroxide mediated polymerization --- mathematical modeling --- Poly(acrylic acid) --- free-radical polymerization --- reaction model --- process intensification --- semi-batch to continuous --- initiator feeding policies --- styrene --- Monte Carlo simulation --- polymer microstructure --- aqueous phase polymerization --- polyelectrolytes --- radical polymerization --- modeling and simulation --- emulsion polymerization --- styrene–butadiene rubber --- nitrile rubber --- ethylene polymerization --- metallocene --- zirconium-based catalyst --- organoboron compounds --- polymer grafting --- polymer synthesis --- polymer characterization --- polymer reaction engineering --- reversible deactivation radical polymerization --- nano-SiO2 --- silane coupling agent --- thermal stability --- mechanical parameter --- molecular simulation --- n/a --- styrene-butadiene rubber
Choose an application
This Special Issue on “Polymer Membranes for Gas Separation” of the journal Membranes aims to offer an overview about the different applications and strategies available to improve the separation performances based on the material choice and the process conditions.Various topics have been discussed, including the synthesis and characterization of novel membrane materials, membrane aging, and the impact of process conditions on transport phenomena.
gas separation --- CO2 capture --- mixed-matrix membranes --- aromatic poly(imide)s --- bulky pendant groups --- gas permeability --- structure-property relationship --- polyphenylacetylene --- cis-cisoid conformation --- cis-transoid conformation --- carbamate group --- membrane-forming ability --- solubility --- oxygen permeation membrane --- graphdiyne --- molecular simulation --- membrane separation --- hydrogen purification --- polyimide membrane --- natural gas separation --- pollutant effects --- stability measurements --- facilitated transport --- fixed site carrier membrane --- polyallylamine-polyvinyl alcohol-graphene oxide membrane --- modelling --- carbon capture --- gas permeation --- composite membranes --- CO2/CH4 separation --- water and organic pollutants --- hydrophilic/hydrophobic character --- biogas upgrading --- sustainable energy --- electrochemical hydrogen separation --- electrochemical hydrogen pump --- proton exchange membrane (PEM) --- hydrogen purification/separation --- physical aging --- hyper cross-linked polymer --- 13C spin-lattice relaxation times --- SS-NMR spectroscopy --- n/a
Choose an application
Molecular simulations are commonly used in physics, chemistry, biology, material science, engineering, and even medicine. This book provides a wide range of molecular simulation methods and their applications in various fields. It reflects the power of molecular simulation as an effective research tool. We hope that the presented results can provide an impetus for further fruitful studies.
Technology. --- molecular dynamics simulation --- osmosis --- water transport --- nanochannel --- carbon nanotube --- graphene --- osmolyte --- compartment --- rhodopsins --- spectral properties of rhodopsins --- spectral tuning in rhodopsins --- engineering of red-shifted rhodopsins --- photobiology --- biological photosensors --- molecular modeling --- multiscale --- coarse graining --- Monte Carlo simulation --- force fields --- neural network --- many body interactions --- sampling --- local sampling --- local free energy landscape --- generalized solvation free energy --- molecular solvation theory --- three-dimensional reference interaction site model --- Kovalenko-Hirata closure --- biomolecular simulation --- multiple time step MD --- protein-ligand binding --- biomolecular solvation --- antibody --- epitope --- molecular dynamics --- mutation --- toll-like receptor --- GPU programming --- DNA damage --- proton transport --- drag reduction --- surfactant molecules --- self-assembly --- coarse-grained molecular simulation --- numerical method --- laser-matter interaction --- time-dependent Schrödinger equation --- time-dependent unitary transformation method --- strong-field ionization --- Kramers-Henneberger frame --- hairy nanoparticles --- adsorption on nanoparticles --- nanocarriers --- computer simulations --- COVID-19 --- SARS-CoV-2 --- PF-07321332 --- α-ketoamide --- 3CL protease --- main protease --- DFT --- CASTEP --- aiMD --- ab initio molecular dynamics --- phase transition --- polymorphism --- Janus particles --- phase transitions --- gemini --- force field --- parametrisation --- antimicrobial --- membranes --- colloids with competing interactions --- periodic microphases --- confinement --- Monte Carlo --- atomistic simulation --- molecular simulation --- hard sphere --- extreme conditions --- nanocomposites --- cluster --- crystallization --- atomic structure --- packing --- semi-flexible polymers --- order parameter --- molecular dynamics simulation --- osmosis --- water transport --- nanochannel --- carbon nanotube --- graphene --- osmolyte --- compartment --- rhodopsins --- spectral properties of rhodopsins --- spectral tuning in rhodopsins --- engineering of red-shifted rhodopsins --- photobiology --- biological photosensors --- molecular modeling --- multiscale --- coarse graining --- Monte Carlo simulation --- force fields --- neural network --- many body interactions --- sampling --- local sampling --- local free energy landscape --- generalized solvation free energy --- molecular solvation theory --- three-dimensional reference interaction site model --- Kovalenko-Hirata closure --- biomolecular simulation --- multiple time step MD --- protein-ligand binding --- biomolecular solvation --- antibody --- epitope --- molecular dynamics --- mutation --- toll-like receptor --- GPU programming --- DNA damage --- proton transport --- drag reduction --- surfactant molecules --- self-assembly --- coarse-grained molecular simulation --- numerical method --- laser-matter interaction --- time-dependent Schrödinger equation --- time-dependent unitary transformation method --- strong-field ionization --- Kramers-Henneberger frame --- hairy nanoparticles --- adsorption on nanoparticles --- nanocarriers --- computer simulations --- COVID-19 --- SARS-CoV-2 --- PF-07321332 --- α-ketoamide --- 3CL protease --- main protease --- DFT --- CASTEP --- aiMD --- ab initio molecular dynamics --- phase transition --- polymorphism --- Janus particles --- phase transitions --- gemini --- force field --- parametrisation --- antimicrobial --- membranes --- colloids with competing interactions --- periodic microphases --- confinement --- Monte Carlo --- atomistic simulation --- molecular simulation --- hard sphere --- extreme conditions --- nanocomposites --- cluster --- crystallization --- atomic structure --- packing --- semi-flexible polymers --- order parameter
Choose an application
Molecular simulations are commonly used in physics, chemistry, biology, material science, engineering, and even medicine. This book provides a wide range of molecular simulation methods and their applications in various fields. It reflects the power of molecular simulation as an effective research tool. We hope that the presented results can provide an impetus for further fruitful studies.
Technology: general issues --- molecular dynamics simulation --- osmosis --- water transport --- nanochannel --- carbon nanotube --- graphene --- osmolyte --- compartment --- rhodopsins --- spectral properties of rhodopsins --- spectral tuning in rhodopsins --- engineering of red-shifted rhodopsins --- photobiology --- biological photosensors --- molecular modeling --- multiscale --- coarse graining --- Monte Carlo simulation --- force fields --- neural network --- many body interactions --- sampling --- local sampling --- local free energy landscape --- generalized solvation free energy --- molecular solvation theory --- three-dimensional reference interaction site model --- Kovalenko-Hirata closure --- biomolecular simulation --- multiple time step MD --- protein-ligand binding --- biomolecular solvation --- antibody --- epitope --- molecular dynamics --- mutation --- toll-like receptor --- GPU programming --- DNA damage --- proton transport --- drag reduction --- surfactant molecules --- self-assembly --- coarse-grained molecular simulation --- numerical method --- laser-matter interaction --- time-dependent Schrödinger equation --- time-dependent unitary transformation method --- strong-field ionization --- Kramers-Henneberger frame --- hairy nanoparticles --- adsorption on nanoparticles --- nanocarriers --- computer simulations --- COVID-19 --- SARS-CoV-2 --- PF-07321332 --- α-ketoamide --- 3CL protease --- main protease --- DFT --- CASTEP --- aiMD --- ab initio molecular dynamics --- phase transition --- polymorphism --- Janus particles --- phase transitions --- gemini --- force field --- parametrisation --- antimicrobial --- membranes --- colloids with competing interactions --- periodic microphases --- confinement --- Monte Carlo --- atomistic simulation --- molecular simulation --- hard sphere --- extreme conditions --- nanocomposites --- cluster --- crystallization --- atomic structure --- packing --- semi-flexible polymers --- order parameter --- n/a --- time-dependent Schrödinger equation --- Technology.
Choose an application
Molecular simulations are commonly used in physics, chemistry, biology, material science, engineering, and even medicine. This book provides a wide range of molecular simulation methods and their applications in various fields. It reflects the power of molecular simulation as an effective research tool. We hope that the presented results can provide an impetus for further fruitful studies.
molecular dynamics simulation --- osmosis --- water transport --- nanochannel --- carbon nanotube --- graphene --- osmolyte --- compartment --- rhodopsins --- spectral properties of rhodopsins --- spectral tuning in rhodopsins --- engineering of red-shifted rhodopsins --- photobiology --- biological photosensors --- molecular modeling --- multiscale --- coarse graining --- Monte Carlo simulation --- force fields --- neural network --- many body interactions --- sampling --- local sampling --- local free energy landscape --- generalized solvation free energy --- molecular solvation theory --- three-dimensional reference interaction site model --- Kovalenko-Hirata closure --- biomolecular simulation --- multiple time step MD --- protein-ligand binding --- biomolecular solvation --- antibody --- epitope --- molecular dynamics --- mutation --- toll-like receptor --- GPU programming --- DNA damage --- proton transport --- drag reduction --- surfactant molecules --- self-assembly --- coarse-grained molecular simulation --- numerical method --- laser-matter interaction --- time-dependent Schrödinger equation --- time-dependent unitary transformation method --- strong-field ionization --- Kramers-Henneberger frame --- hairy nanoparticles --- adsorption on nanoparticles --- nanocarriers --- computer simulations --- COVID-19 --- SARS-CoV-2 --- PF-07321332 --- α-ketoamide --- 3CL protease --- main protease --- DFT --- CASTEP --- aiMD --- ab initio molecular dynamics --- phase transition --- polymorphism --- Janus particles --- phase transitions --- gemini --- force field --- parametrisation --- antimicrobial --- membranes --- colloids with competing interactions --- periodic microphases --- confinement --- Monte Carlo --- atomistic simulation --- molecular simulation --- hard sphere --- extreme conditions --- nanocomposites --- cluster --- crystallization --- atomic structure --- packing --- semi-flexible polymers --- order parameter --- n/a --- time-dependent Schrödinger equation --- Technology.
Choose an application
This Special Issue on “Polymer Membranes for Gas Separation” of the journal Membranes aims to offer an overview about the different applications and strategies available to improve the separation performances based on the material choice and the process conditions.Various topics have been discussed, including the synthesis and characterization of novel membrane materials, membrane aging, and the impact of process conditions on transport phenomena.
Technology: general issues --- Chemical engineering --- gas separation --- CO2 capture --- mixed-matrix membranes --- aromatic poly(imide)s --- bulky pendant groups --- gas permeability --- structure-property relationship --- polyphenylacetylene --- cis-cisoid conformation --- cis-transoid conformation --- carbamate group --- membrane-forming ability --- solubility --- oxygen permeation membrane --- graphdiyne --- molecular simulation --- membrane separation --- hydrogen purification --- polyimide membrane --- natural gas separation --- pollutant effects --- stability measurements --- facilitated transport --- fixed site carrier membrane --- polyallylamine-polyvinyl alcohol-graphene oxide membrane --- modelling --- carbon capture --- gas permeation --- composite membranes --- CO2/CH4 separation --- water and organic pollutants --- hydrophilic/hydrophobic character --- biogas upgrading --- sustainable energy --- electrochemical hydrogen separation --- electrochemical hydrogen pump --- proton exchange membrane (PEM) --- hydrogen purification/separation --- physical aging --- hyper cross-linked polymer --- 13C spin-lattice relaxation times --- SS-NMR spectroscopy --- gas separation --- CO2 capture --- mixed-matrix membranes --- aromatic poly(imide)s --- bulky pendant groups --- gas permeability --- structure-property relationship --- polyphenylacetylene --- cis-cisoid conformation --- cis-transoid conformation --- carbamate group --- membrane-forming ability --- solubility --- oxygen permeation membrane --- graphdiyne --- molecular simulation --- membrane separation --- hydrogen purification --- polyimide membrane --- natural gas separation --- pollutant effects --- stability measurements --- facilitated transport --- fixed site carrier membrane --- polyallylamine-polyvinyl alcohol-graphene oxide membrane --- modelling --- carbon capture --- gas permeation --- composite membranes --- CO2/CH4 separation --- water and organic pollutants --- hydrophilic/hydrophobic character --- biogas upgrading --- sustainable energy --- electrochemical hydrogen separation --- electrochemical hydrogen pump --- proton exchange membrane (PEM) --- hydrogen purification/separation --- physical aging --- hyper cross-linked polymer --- 13C spin-lattice relaxation times --- SS-NMR spectroscopy
Listing 1 - 10 of 22 | << page >> |
Sort by
|