Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (6)

Listing 1 - 6 of 6
Sort by

Book
Additively Manufactured Coatings
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Functional coatings are cost-effective means to protect substrates from wear, corrosion, erosion, tribocorrosion, high temperature and high pressure in extreme environmental conditions. These are primarily manufactured through metal/ceramic powder deposition in a subsequent layer by layer fashion on the substrate materials. In all cases, the functional coatings need to be reliable for the intended application. The emerging techniques in 3D printing/additive manufacturing can be utilized to develop high-performance functional coatings. These methods provide geometrical precision, flexibility in geometrical complexity, customization of the coating layers, and reduce the raw materials waste, keeping the manufacturing cost low while addressing many of the technical barriers of conventional coating methods. With the rapid development of cutting-edge value-added technologies in aerospace, nuclear, military, space, and energy industry, 3D printing/additive manufacturing techniques will be major advantages. Novel functional coatings and 3D printing/additive manufacturing techniques will be critical to value-added components in the future development of technologies. The book provide an overview of the recent development in coating manufacturing techniques and potential to use in high-end engineering applications.


Book
Additively Manufactured Coatings
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Functional coatings are cost-effective means to protect substrates from wear, corrosion, erosion, tribocorrosion, high temperature and high pressure in extreme environmental conditions. These are primarily manufactured through metal/ceramic powder deposition in a subsequent layer by layer fashion on the substrate materials. In all cases, the functional coatings need to be reliable for the intended application. The emerging techniques in 3D printing/additive manufacturing can be utilized to develop high-performance functional coatings. These methods provide geometrical precision, flexibility in geometrical complexity, customization of the coating layers, and reduce the raw materials waste, keeping the manufacturing cost low while addressing many of the technical barriers of conventional coating methods. With the rapid development of cutting-edge value-added technologies in aerospace, nuclear, military, space, and energy industry, 3D printing/additive manufacturing techniques will be major advantages. Novel functional coatings and 3D printing/additive manufacturing techniques will be critical to value-added components in the future development of technologies. The book provide an overview of the recent development in coating manufacturing techniques and potential to use in high-end engineering applications.


Book
Additively Manufactured Coatings
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Functional coatings are cost-effective means to protect substrates from wear, corrosion, erosion, tribocorrosion, high temperature and high pressure in extreme environmental conditions. These are primarily manufactured through metal/ceramic powder deposition in a subsequent layer by layer fashion on the substrate materials. In all cases, the functional coatings need to be reliable for the intended application. The emerging techniques in 3D printing/additive manufacturing can be utilized to develop high-performance functional coatings. These methods provide geometrical precision, flexibility in geometrical complexity, customization of the coating layers, and reduce the raw materials waste, keeping the manufacturing cost low while addressing many of the technical barriers of conventional coating methods. With the rapid development of cutting-edge value-added technologies in aerospace, nuclear, military, space, and energy industry, 3D printing/additive manufacturing techniques will be major advantages. Novel functional coatings and 3D printing/additive manufacturing techniques will be critical to value-added components in the future development of technologies. The book provide an overview of the recent development in coating manufacturing techniques and potential to use in high-end engineering applications.


Book
Process-Structure-Properties in Polymer Additive Manufacturing
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing (AM) methods have grown and evolved rapidly in recent years. AM for polymers is an exciting field and has great potential in transformative and translational research in many fields, such as biomedical, aerospace, and even electronics. Current methods for polymer AM include material extrusion, material jetting, vat polymerisation, and powder bed fusion. With the promise of more applications, detailed understanding of AM—from the processability of the feedstock to the relationship between the process–structure–properties of AM parts—has become more critical. More research work is needed in material development to widen the choice of materials for polymer additive manufacturing. Modelling and simulations of the process will allow the prediction of microstructures and mechanical properties of the fabricated parts while complementing the understanding of the physical phenomena that occurs during the AM processes. In this book, state-of-the-art reviews and current research are collated, which focus on the process–structure–properties relationships in polymer additive manufacturing.

Keywords

Technology: general issues --- Three Point Bending test --- mode I fracture toughness --- selective laser sintering --- polyamide and Alumide --- geometrical errors --- microstructure. --- 3D printing --- additive manufacturing --- material extrusion --- silicone --- meniscus implant --- material jetting --- polymer --- machine capability --- process capability --- statistical process control --- quality --- variability --- tolerance grade --- Fused Filament Fabrication --- thermoplastic polyurethane --- energy absorption --- dynamic compression --- crashworthiness --- Simplified Rubber Material --- Ls Dyna --- magnetic composites --- ferrite composites --- field structuring --- microstructure control --- rheological modifications --- fused filament fabrication --- polymers --- fibre reinforcement --- mechanical properties --- CFRP --- PLA mold --- fused deposition modeling --- vacuum bag technology --- 3D scanning --- bike saddle --- impact resistance --- bioinspired --- helicoidal structure --- electrospinning --- piezoelectric --- PVDF --- barium titanate --- nanocomposites --- printed electronics --- inkjet printing --- nanomaterial ink --- poly(ethylene terephthalate) --- bisphenol --- crystallization kinetics --- thermal property --- melt polycondensation --- polymer resin --- turbomachinery --- optimization --- Three Point Bending test --- mode I fracture toughness --- selective laser sintering --- polyamide and Alumide --- geometrical errors --- microstructure. --- 3D printing --- additive manufacturing --- material extrusion --- silicone --- meniscus implant --- material jetting --- polymer --- machine capability --- process capability --- statistical process control --- quality --- variability --- tolerance grade --- Fused Filament Fabrication --- thermoplastic polyurethane --- energy absorption --- dynamic compression --- crashworthiness --- Simplified Rubber Material --- Ls Dyna --- magnetic composites --- ferrite composites --- field structuring --- microstructure control --- rheological modifications --- fused filament fabrication --- polymers --- fibre reinforcement --- mechanical properties --- CFRP --- PLA mold --- fused deposition modeling --- vacuum bag technology --- 3D scanning --- bike saddle --- impact resistance --- bioinspired --- helicoidal structure --- electrospinning --- piezoelectric --- PVDF --- barium titanate --- nanocomposites --- printed electronics --- inkjet printing --- nanomaterial ink --- poly(ethylene terephthalate) --- bisphenol --- crystallization kinetics --- thermal property --- melt polycondensation --- polymer resin --- turbomachinery --- optimization


Book
Process-Structure-Properties in Polymer Additive Manufacturing
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing (AM) methods have grown and evolved rapidly in recent years. AM for polymers is an exciting field and has great potential in transformative and translational research in many fields, such as biomedical, aerospace, and even electronics. Current methods for polymer AM include material extrusion, material jetting, vat polymerisation, and powder bed fusion. With the promise of more applications, detailed understanding of AM—from the processability of the feedstock to the relationship between the process–structure–properties of AM parts—has become more critical. More research work is needed in material development to widen the choice of materials for polymer additive manufacturing. Modelling and simulations of the process will allow the prediction of microstructures and mechanical properties of the fabricated parts while complementing the understanding of the physical phenomena that occurs during the AM processes. In this book, state-of-the-art reviews and current research are collated, which focus on the process–structure–properties relationships in polymer additive manufacturing.


Book
Process-Structure-Properties in Polymer Additive Manufacturing
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing (AM) methods have grown and evolved rapidly in recent years. AM for polymers is an exciting field and has great potential in transformative and translational research in many fields, such as biomedical, aerospace, and even electronics. Current methods for polymer AM include material extrusion, material jetting, vat polymerisation, and powder bed fusion. With the promise of more applications, detailed understanding of AM—from the processability of the feedstock to the relationship between the process–structure–properties of AM parts—has become more critical. More research work is needed in material development to widen the choice of materials for polymer additive manufacturing. Modelling and simulations of the process will allow the prediction of microstructures and mechanical properties of the fabricated parts while complementing the understanding of the physical phenomena that occurs during the AM processes. In this book, state-of-the-art reviews and current research are collated, which focus on the process–structure–properties relationships in polymer additive manufacturing.

Listing 1 - 6 of 6
Sort by