Narrow your search
Listing 1 - 4 of 4
Sort by

Dissertation
Création d'outils de communication digitale interactive pour la microbrasserie de la ferme des loups
Authors: --- --- --- ---
Year: 2020 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

This project thesis was conducted in the frame of an internship for the project of la Ferme des Loups. The latter is a building, recently renovated to become a zytho-bistro-naturo-touristic complex in the village of Forêt. The main activity of the place will be driven by its microbrewery and the launch of a range of beers called “La Louve” (the she-wolf). Therefore, in order to start a marketing strategy, a set of 3 interactive digital communication tools were created: a legend (storytelling), social media accounts (Facebook and Instagram), and a website.
The aim of this paper is to find good practices for the three tools to properly develop and handle the marketing strategy of la Ferme des Loups. 
The scientific literature about the three topics was analyzed and allowed to note elements to take into consideration for each. Unfortunately, due to the Covid-19 crisis, the storytelling and social media parts could not be practically measured to confirm the theory and to see how it can specifically apply in this case. 
However, in addition to the scientific review, more practical insights could be collected for the website. Indeed, a benchmark analyzing 9 other microbrewery websites was conducted as well as a qualitative study with 15 respondents. It allowed to bring more specific information regarding the “conventions” used for these kinds of platforms, as well as the users’ expectations but also how they feel a microbrewery website should look like and provide information about. 
All the resources examined and analyzed compared with what had already be done about the legend, social media, and the website made it possible to provide practical and managerial recommendations to lead the marketing strategy with success moving forward.


Book
Yeast Biotechnology 3.0
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Yeasts are truly fascinating microorganisms. Due to their diverse and dynamic activities, they have been used for the production of many interesting products, such as beer, wine, bread, biofuels and biopharmaceuticals. Saccharomyces cerevisiae (bakers’ yeast) is the yeast species that is surely the most exploited by man. Saccharomyces is a top choice organism for industrial applications, although its use for producing beer dates back to at least the 6th millennium BC. Bakers’ yeast has been a cornerstone of modern biotechnology, enabling the development of efficient production processes for antibiotics, biopharmaceuticals, technical enzymes, and ethanol and biofuels. Today, diverse yeast species are explored for industrial applications, such as e.g. Saccharomyces species, Pichia pastoris and other Pichia species, Kluyveromyces marxianus, Hansenula polymorpha, Yarrowia lipolytica, Candida species, Phaffia rhodozyma, wild yeasts for beer brewing, etc. This Special Issue is focused on recent developments of yeast biotechnology with topics including recent techniques for characterizing yeast and their physiology (including omics and nanobiotechnology techniques), methods to adapt industrial strains (including metabolic, synthetic and evolutionary engineering) and the use of yeasts as microbial cell factories to produce biopharmaceuticals, enzymes, alcohols, organic acids, flavours and fine chemicals, and advances in yeast fermentation technology and industrial fermentation processes.

Keywords

Technology: general issues --- coffee processing --- coffee fermentation --- starter culture --- coffee beverage --- yeast --- Icewine --- Saccharomyces cerevisiae --- hyperosmotic stress --- CRISPR-Cas9 --- glycerol transport --- STL1 --- brewing --- Cyberlindnera --- NABLAB --- non-alcoholic beer --- non-conventional yeast --- non-Saccharomyces yeast --- response surface methodology --- Ustilago --- itaconic acid --- process improvement --- lignocellulosic feedstock --- yeasts --- grape --- federweisser --- wine --- microbiota identification --- MALDI-TOF MS Biotyper --- Torulaspora delbrueckii --- craft beer --- microbrewery plant --- mixed fermentation --- aroma profile --- strain collection --- aroma profiling --- gas chromatography --- wine yeast --- Saccharomyces --- fermentation --- volatile aroma compounds --- Simultaneous inoculation --- Alcoholic fermentation --- Malolactic fermentation --- Sacccharomyces cerevisiae --- Oenococcus oeni --- PN4TM --- OmegaTM --- Aroma profile --- antioxidant --- coffee --- W. anomalus --- industrial brewer’s strains --- adaptive laboratory evolution (ALE) --- snowflake phenotype --- beer fermentation --- wine yeasts --- lactic acid bacteria --- co-inoculation --- sequence inoculation --- flavor compounds --- color pigments --- cell printing --- piezoelectric dispensing --- GFP-tagged yeast clone collection --- living cell microarrays --- microfluidic chip --- dynamic single-cell analysis --- Candida albicans --- adhesion --- fibronectin --- nanomotion --- atomic force microscope (AFM) --- xylose metabolism --- genetic engineering --- biofuel --- Spathaspora passalidarum --- Pichia stipitis --- volatile organic compounds --- proton-transfer reaction-mass spectrometry --- Metschnikowia pulcherrima --- flavor --- non-Saccharomyces yeasts --- fermentation-derived products --- fermented beverages --- beer --- coffee bean fermentation --- itaconic acid production --- bioethanol production --- bioreactors --- yeast micro- and nanobiotechnology --- coffee processing --- coffee fermentation --- starter culture --- coffee beverage --- yeast --- Icewine --- Saccharomyces cerevisiae --- hyperosmotic stress --- CRISPR-Cas9 --- glycerol transport --- STL1 --- brewing --- Cyberlindnera --- NABLAB --- non-alcoholic beer --- non-conventional yeast --- non-Saccharomyces yeast --- response surface methodology --- Ustilago --- itaconic acid --- process improvement --- lignocellulosic feedstock --- yeasts --- grape --- federweisser --- wine --- microbiota identification --- MALDI-TOF MS Biotyper --- Torulaspora delbrueckii --- craft beer --- microbrewery plant --- mixed fermentation --- aroma profile --- strain collection --- aroma profiling --- gas chromatography --- wine yeast --- Saccharomyces --- fermentation --- volatile aroma compounds --- Simultaneous inoculation --- Alcoholic fermentation --- Malolactic fermentation --- Sacccharomyces cerevisiae --- Oenococcus oeni --- PN4TM --- OmegaTM --- Aroma profile --- antioxidant --- coffee --- W. anomalus --- industrial brewer’s strains --- adaptive laboratory evolution (ALE) --- snowflake phenotype --- beer fermentation --- wine yeasts --- lactic acid bacteria --- co-inoculation --- sequence inoculation --- flavor compounds --- color pigments --- cell printing --- piezoelectric dispensing --- GFP-tagged yeast clone collection --- living cell microarrays --- microfluidic chip --- dynamic single-cell analysis --- Candida albicans --- adhesion --- fibronectin --- nanomotion --- atomic force microscope (AFM) --- xylose metabolism --- genetic engineering --- biofuel --- Spathaspora passalidarum --- Pichia stipitis --- volatile organic compounds --- proton-transfer reaction-mass spectrometry --- Metschnikowia pulcherrima --- flavor --- non-Saccharomyces yeasts --- fermentation-derived products --- fermented beverages --- beer --- coffee bean fermentation --- itaconic acid production --- bioethanol production --- bioreactors --- yeast micro- and nanobiotechnology


Book
Yeast Biotechnology 3.0
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Yeasts are truly fascinating microorganisms. Due to their diverse and dynamic activities, they have been used for the production of many interesting products, such as beer, wine, bread, biofuels and biopharmaceuticals. Saccharomyces cerevisiae (bakers’ yeast) is the yeast species that is surely the most exploited by man. Saccharomyces is a top choice organism for industrial applications, although its use for producing beer dates back to at least the 6th millennium BC. Bakers’ yeast has been a cornerstone of modern biotechnology, enabling the development of efficient production processes for antibiotics, biopharmaceuticals, technical enzymes, and ethanol and biofuels. Today, diverse yeast species are explored for industrial applications, such as e.g. Saccharomyces species, Pichia pastoris and other Pichia species, Kluyveromyces marxianus, Hansenula polymorpha, Yarrowia lipolytica, Candida species, Phaffia rhodozyma, wild yeasts for beer brewing, etc. This Special Issue is focused on recent developments of yeast biotechnology with topics including recent techniques for characterizing yeast and their physiology (including omics and nanobiotechnology techniques), methods to adapt industrial strains (including metabolic, synthetic and evolutionary engineering) and the use of yeasts as microbial cell factories to produce biopharmaceuticals, enzymes, alcohols, organic acids, flavours and fine chemicals, and advances in yeast fermentation technology and industrial fermentation processes.

Keywords

Technology: general issues --- coffee processing --- coffee fermentation --- starter culture --- coffee beverage --- yeast --- Icewine --- Saccharomyces cerevisiae --- hyperosmotic stress --- CRISPR-Cas9 --- glycerol transport --- STL1 --- brewing --- Cyberlindnera --- NABLAB --- non-alcoholic beer --- non-conventional yeast --- non-Saccharomyces yeast --- response surface methodology --- Ustilago --- itaconic acid --- process improvement --- lignocellulosic feedstock --- yeasts --- grape --- federweisser --- wine --- microbiota identification --- MALDI-TOF MS Biotyper --- Torulaspora delbrueckii --- craft beer --- microbrewery plant --- mixed fermentation --- aroma profile --- strain collection --- aroma profiling --- gas chromatography --- wine yeast --- Saccharomyces --- fermentation --- volatile aroma compounds --- Simultaneous inoculation --- Alcoholic fermentation --- Malolactic fermentation --- Sacccharomyces cerevisiae --- Oenococcus oeni --- PN4TM --- OmegaTM --- Aroma profile --- antioxidant --- coffee --- W. anomalus --- industrial brewer’s strains --- adaptive laboratory evolution (ALE) --- snowflake phenotype --- beer fermentation --- wine yeasts --- lactic acid bacteria --- co-inoculation --- sequence inoculation --- flavor compounds --- color pigments --- cell printing --- piezoelectric dispensing --- GFP-tagged yeast clone collection --- living cell microarrays --- microfluidic chip --- dynamic single-cell analysis --- Candida albicans --- adhesion --- fibronectin --- nanomotion --- atomic force microscope (AFM) --- xylose metabolism --- genetic engineering --- biofuel --- Spathaspora passalidarum --- Pichia stipitis --- volatile organic compounds --- proton-transfer reaction-mass spectrometry --- Metschnikowia pulcherrima --- flavor --- non-Saccharomyces yeasts --- fermentation-derived products --- fermented beverages --- beer --- coffee bean fermentation --- itaconic acid production --- bioethanol production --- bioreactors --- yeast micro- and nanobiotechnology


Book
Yeast Biotechnology 3.0
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Yeasts are truly fascinating microorganisms. Due to their diverse and dynamic activities, they have been used for the production of many interesting products, such as beer, wine, bread, biofuels and biopharmaceuticals. Saccharomyces cerevisiae (bakers’ yeast) is the yeast species that is surely the most exploited by man. Saccharomyces is a top choice organism for industrial applications, although its use for producing beer dates back to at least the 6th millennium BC. Bakers’ yeast has been a cornerstone of modern biotechnology, enabling the development of efficient production processes for antibiotics, biopharmaceuticals, technical enzymes, and ethanol and biofuels. Today, diverse yeast species are explored for industrial applications, such as e.g. Saccharomyces species, Pichia pastoris and other Pichia species, Kluyveromyces marxianus, Hansenula polymorpha, Yarrowia lipolytica, Candida species, Phaffia rhodozyma, wild yeasts for beer brewing, etc. This Special Issue is focused on recent developments of yeast biotechnology with topics including recent techniques for characterizing yeast and their physiology (including omics and nanobiotechnology techniques), methods to adapt industrial strains (including metabolic, synthetic and evolutionary engineering) and the use of yeasts as microbial cell factories to produce biopharmaceuticals, enzymes, alcohols, organic acids, flavours and fine chemicals, and advances in yeast fermentation technology and industrial fermentation processes.

Keywords

coffee processing --- coffee fermentation --- starter culture --- coffee beverage --- yeast --- Icewine --- Saccharomyces cerevisiae --- hyperosmotic stress --- CRISPR-Cas9 --- glycerol transport --- STL1 --- brewing --- Cyberlindnera --- NABLAB --- non-alcoholic beer --- non-conventional yeast --- non-Saccharomyces yeast --- response surface methodology --- Ustilago --- itaconic acid --- process improvement --- lignocellulosic feedstock --- yeasts --- grape --- federweisser --- wine --- microbiota identification --- MALDI-TOF MS Biotyper --- Torulaspora delbrueckii --- craft beer --- microbrewery plant --- mixed fermentation --- aroma profile --- strain collection --- aroma profiling --- gas chromatography --- wine yeast --- Saccharomyces --- fermentation --- volatile aroma compounds --- Simultaneous inoculation --- Alcoholic fermentation --- Malolactic fermentation --- Sacccharomyces cerevisiae --- Oenococcus oeni --- PN4TM --- OmegaTM --- Aroma profile --- antioxidant --- coffee --- W. anomalus --- industrial brewer’s strains --- adaptive laboratory evolution (ALE) --- snowflake phenotype --- beer fermentation --- wine yeasts --- lactic acid bacteria --- co-inoculation --- sequence inoculation --- flavor compounds --- color pigments --- cell printing --- piezoelectric dispensing --- GFP-tagged yeast clone collection --- living cell microarrays --- microfluidic chip --- dynamic single-cell analysis --- Candida albicans --- adhesion --- fibronectin --- nanomotion --- atomic force microscope (AFM) --- xylose metabolism --- genetic engineering --- biofuel --- Spathaspora passalidarum --- Pichia stipitis --- volatile organic compounds --- proton-transfer reaction-mass spectrometry --- Metschnikowia pulcherrima --- flavor --- non-Saccharomyces yeasts --- fermentation-derived products --- fermented beverages --- beer --- coffee bean fermentation --- itaconic acid production --- bioethanol production --- bioreactors --- yeast micro- and nanobiotechnology

Listing 1 - 4 of 4
Sort by