Narrow your search

Library

FARO (5)

KU Leuven (5)

LUCA School of Arts (5)

Odisee (5)

Thomas More Kempen (5)

Thomas More Mechelen (5)

UCLL (5)

ULiège (5)

VIVES (5)

Vlaams Parlement (5)

More...

Resource type

book (13)


Language

English (13)


Year
From To Submit

2022 (5)

2021 (5)

2020 (3)

Listing 1 - 10 of 13 << page
of 2
>>
Sort by

Book
Sustainable Structural Design for High-Performance Buildings and Infrastructures
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional design loads on buildings and structures may have different causes, including high-strain natural hazards, man-made attacks and accidents, and extreme operational conditions. All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive. Dedicated and refined methods are thus required for design, analysis, and maintenance under structures’ expected lifetimes. Major challenges are related to the structural typology and material properties. Further issues are related to the need for the mitigation or retrofitting of existing structures, or from the optimal and safe design of innovative materials/systems. Finally, in some cases, no design recommendations are available, and thus experimental investigations can have a key role in the overall process. For this SI, we have invited scientists to focus on the recent advancements and trends in the sustainable design of high-performance buildings and structures. Special attention has been given to materials and systems, but also to buildings and infrastructures that can be subjected to extreme design loads. This can be the case of exceptional natural events or unfavorable ambient conditions. The assessment of hazard and risk associated with structures and civil infrastructure systems is important for the preservation and protection of built environments. New procedures, methods, and more precise rules for safety design and the protection of sustainable structures are, however, needed.

Keywords

Technology: general issues --- History of engineering & technology --- Materials science --- analytical model --- ductile walls --- shear strength --- capacity reduction --- Eurocode 8 --- concrete --- stainless steel --- reinforcement --- temperature --- thermal expansion --- waste management --- construction demolition waste --- thermochromic --- green building material --- recycled waste material --- corrosion --- deterioration --- stirrup --- beams --- cement-based composites (CBCs) --- compressive strength --- fire exposure --- thermal boundaries --- finite element (FE) numerical modelling --- empirical formulations --- fly ash --- granulated blast-furnace slag --- palm oil fly ash --- ordinary Portland cement --- recycled ceramics --- green mortar --- alkali-activated mix design --- embodied energy --- CO2 emission --- assessment --- earthquake --- Zagreb --- case study --- cultural heritage --- seismic design --- structural glass --- q-factor --- engineering demand parameters (EDPs) --- finite element (FE) numerical models --- non-linear incremental dynamic analyses (IDA) --- cloud analysis --- linear regression --- composites --- timber --- CLT --- load-bearing glass --- friction --- FEM analysis --- beam–column joints --- shear capacity --- cyclic loading --- joint’s numerical modeling --- interior joint --- corner joint --- modified reinforcement technique (MRT) --- beam-column joint --- ferrocement --- crack --- ductility --- displacement --- reinforced concrete --- deep beam --- support vector regression --- metaheuristic optimization


Book
Sustainable Structural Design for High-Performance Buildings and Infrastructures
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional design loads on buildings and structures may have different causes, including high-strain natural hazards, man-made attacks and accidents, and extreme operational conditions. All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive. Dedicated and refined methods are thus required for design, analysis, and maintenance under structures’ expected lifetimes. Major challenges are related to the structural typology and material properties. Further issues are related to the need for the mitigation or retrofitting of existing structures, or from the optimal and safe design of innovative materials/systems. Finally, in some cases, no design recommendations are available, and thus experimental investigations can have a key role in the overall process. For this SI, we have invited scientists to focus on the recent advancements and trends in the sustainable design of high-performance buildings and structures. Special attention has been given to materials and systems, but also to buildings and infrastructures that can be subjected to extreme design loads. This can be the case of exceptional natural events or unfavorable ambient conditions. The assessment of hazard and risk associated with structures and civil infrastructure systems is important for the preservation and protection of built environments. New procedures, methods, and more precise rules for safety design and the protection of sustainable structures are, however, needed.


Book
Sustainable Structural Design for High-Performance Buildings and Infrastructures
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional design loads on buildings and structures may have different causes, including high-strain natural hazards, man-made attacks and accidents, and extreme operational conditions. All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive. Dedicated and refined methods are thus required for design, analysis, and maintenance under structures’ expected lifetimes. Major challenges are related to the structural typology and material properties. Further issues are related to the need for the mitigation or retrofitting of existing structures, or from the optimal and safe design of innovative materials/systems. Finally, in some cases, no design recommendations are available, and thus experimental investigations can have a key role in the overall process. For this SI, we have invited scientists to focus on the recent advancements and trends in the sustainable design of high-performance buildings and structures. Special attention has been given to materials and systems, but also to buildings and infrastructures that can be subjected to extreme design loads. This can be the case of exceptional natural events or unfavorable ambient conditions. The assessment of hazard and risk associated with structures and civil infrastructure systems is important for the preservation and protection of built environments. New procedures, methods, and more precise rules for safety design and the protection of sustainable structures are, however, needed.

Keywords

Technology: general issues --- History of engineering & technology --- Materials science --- analytical model --- ductile walls --- shear strength --- capacity reduction --- Eurocode 8 --- concrete --- stainless steel --- reinforcement --- temperature --- thermal expansion --- waste management --- construction demolition waste --- thermochromic --- green building material --- recycled waste material --- corrosion --- deterioration --- stirrup --- beams --- cement-based composites (CBCs) --- compressive strength --- fire exposure --- thermal boundaries --- finite element (FE) numerical modelling --- empirical formulations --- fly ash --- granulated blast-furnace slag --- palm oil fly ash --- ordinary Portland cement --- recycled ceramics --- green mortar --- alkali-activated mix design --- embodied energy --- CO2 emission --- assessment --- earthquake --- Zagreb --- case study --- cultural heritage --- seismic design --- structural glass --- q-factor --- engineering demand parameters (EDPs) --- finite element (FE) numerical models --- non-linear incremental dynamic analyses (IDA) --- cloud analysis --- linear regression --- composites --- timber --- CLT --- load-bearing glass --- friction --- FEM analysis --- beam–column joints --- shear capacity --- cyclic loading --- joint’s numerical modeling --- interior joint --- corner joint --- modified reinforcement technique (MRT) --- beam-column joint --- ferrocement --- crack --- ductility --- displacement --- reinforced concrete --- deep beam --- support vector regression --- metaheuristic optimization --- analytical model --- ductile walls --- shear strength --- capacity reduction --- Eurocode 8 --- concrete --- stainless steel --- reinforcement --- temperature --- thermal expansion --- waste management --- construction demolition waste --- thermochromic --- green building material --- recycled waste material --- corrosion --- deterioration --- stirrup --- beams --- cement-based composites (CBCs) --- compressive strength --- fire exposure --- thermal boundaries --- finite element (FE) numerical modelling --- empirical formulations --- fly ash --- granulated blast-furnace slag --- palm oil fly ash --- ordinary Portland cement --- recycled ceramics --- green mortar --- alkali-activated mix design --- embodied energy --- CO2 emission --- assessment --- earthquake --- Zagreb --- case study --- cultural heritage --- seismic design --- structural glass --- q-factor --- engineering demand parameters (EDPs) --- finite element (FE) numerical models --- non-linear incremental dynamic analyses (IDA) --- cloud analysis --- linear regression --- composites --- timber --- CLT --- load-bearing glass --- friction --- FEM analysis --- beam–column joints --- shear capacity --- cyclic loading --- joint’s numerical modeling --- interior joint --- corner joint --- modified reinforcement technique (MRT) --- beam-column joint --- ferrocement --- crack --- ductility --- displacement --- reinforced concrete --- deep beam --- support vector regression --- metaheuristic optimization


Book
Grid-Connected Renewable Energy Sources
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of renewable energy sources (RESs) is a need of global society. This editorial, and its associated Special Issue “Grid-Connected Renewable Energy Sources”, offers a compilation of some of the recent advances in the analysis of current power systems that are composed after the high penetration of distributed generation (DG) with different RESs. The focus is on both new control configurations and on novel methodologies for the optimal placement and sizing of DG. The eleven accepted papers certainly provide a good contribution to control deployments and methodologies for the allocation and sizing of DG.

Keywords

Research & information: general --- Technology: general issues --- solar energy --- wind energy --- energy storage --- renewable energy integration --- Europe --- advanced metering infrastructure --- data acquisition --- IEC standards --- low-cost --- open source --- power measurement --- smart meter --- uncertainty evaluation --- frequency stabilization --- coordinated control --- wind turbine generator --- high-fidelity battery model --- releasable and absorbable energy --- photovoltaic emulator --- photovoltaic panel --- single diode model --- MPPT --- FSWT-SCIG --- battery storage system --- power system stability --- synchronous generator --- hybrid system --- voltage source converter --- passivity-based control --- proportional-integral control --- voltage regulation --- bi-directional converter --- LC impedance source converter --- DC–DC power converter --- bi-directional power flow --- alternating current networks --- direct current networks --- optimal power flow --- non-linear optimization --- control of power electronic converters --- distributed generation --- mixed-integer nonlinear programming --- second-cone programming --- discrete-sine cosine algorithm --- metaheuristic optimization --- DG placement --- evolutionary algorithms --- energy management --- fuzzy controller --- power systems analysis --- interconnected power systems --- latencies --- time-delay effects --- wide area monitoring systems --- renewable energy conversion --- power conditioning devices --- renewable energy policies --- power quality --- computations methods --- control strategies --- electric vehicle charging --- energy management systems --- ancillary services --- monitoring --- prognostic and diagnostic --- solar energy --- wind energy --- energy storage --- renewable energy integration --- Europe --- advanced metering infrastructure --- data acquisition --- IEC standards --- low-cost --- open source --- power measurement --- smart meter --- uncertainty evaluation --- frequency stabilization --- coordinated control --- wind turbine generator --- high-fidelity battery model --- releasable and absorbable energy --- photovoltaic emulator --- photovoltaic panel --- single diode model --- MPPT --- FSWT-SCIG --- battery storage system --- power system stability --- synchronous generator --- hybrid system --- voltage source converter --- passivity-based control --- proportional-integral control --- voltage regulation --- bi-directional converter --- LC impedance source converter --- DC–DC power converter --- bi-directional power flow --- alternating current networks --- direct current networks --- optimal power flow --- non-linear optimization --- control of power electronic converters --- distributed generation --- mixed-integer nonlinear programming --- second-cone programming --- discrete-sine cosine algorithm --- metaheuristic optimization --- DG placement --- evolutionary algorithms --- energy management --- fuzzy controller --- power systems analysis --- interconnected power systems --- latencies --- time-delay effects --- wide area monitoring systems --- renewable energy conversion --- power conditioning devices --- renewable energy policies --- power quality --- computations methods --- control strategies --- electric vehicle charging --- energy management systems --- ancillary services --- monitoring --- prognostic and diagnostic


Book
Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a Special Issue Reprint edited by Prof. Massimo Vitelli and Dr. Luigi Costanzo. It contains original research articles covering, but not limited to, the following topics: maximum power point tracking techniques; forecasting techniques; sizing and optimization of PV components and systems; PV modeling; reconfiguration algorithms; fault diagnosis; mismatching detection; decision processes for grid operators.

Keywords

History of engineering & technology --- sensor network --- data fusion --- complex network analysis --- fault prognosis --- photovoltaic plants --- ANFIS --- statistical method --- gradient descent --- photovoltaic system --- sustainable development --- PV power prediction --- artificial neural network --- renewable energy --- environmental parameters --- multiple regression model --- moth-flame optimization --- parameter extraction --- photovoltaic model --- double flames generation (DFG) strategy --- Solar cell parameters --- single-diode model --- two-diode model --- COA --- photovoltaic systems --- maximum power point tracking --- single stage grid connected systems --- solar concentrator --- spectral beam splitting --- diffractive optical element --- diffractive grating --- PVs power output forecasting --- adaptive neuro-fuzzy inference systems --- particle swarm optimization-artificial neural networks --- solar irradiation --- photovoltaic power prediction --- publicly available weather reports --- machine learning --- long short-term memory --- integrated energy systems --- smart energy management --- PV fleet --- clustering-based PV fault detection --- unsupervised learning --- self-imputation --- implicit model solution --- photovoltaic array --- series–parallel --- global optimization --- partial shading --- deterministic optimization algorithm --- metaheuristic optimization algorithm --- genetic algorithm --- solar cell optimization --- finite difference time domain --- optical modelling --- thermal image --- photovoltaic module --- hot spot --- image processing --- deterioration --- linear approximation --- MPPT algorithm --- duty cycle --- global horizontal irradiance --- mathematical modeling --- feed-forward neural networks --- recurrent neural networks --- LSTM cell --- performances evaluation --- clear sky irradiance --- persistent predictor --- photovoltaics --- artificial neural networks --- national power system --- sensor network --- data fusion --- complex network analysis --- fault prognosis --- photovoltaic plants --- ANFIS --- statistical method --- gradient descent --- photovoltaic system --- sustainable development --- PV power prediction --- artificial neural network --- renewable energy --- environmental parameters --- multiple regression model --- moth-flame optimization --- parameter extraction --- photovoltaic model --- double flames generation (DFG) strategy --- Solar cell parameters --- single-diode model --- two-diode model --- COA --- photovoltaic systems --- maximum power point tracking --- single stage grid connected systems --- solar concentrator --- spectral beam splitting --- diffractive optical element --- diffractive grating --- PVs power output forecasting --- adaptive neuro-fuzzy inference systems --- particle swarm optimization-artificial neural networks --- solar irradiation --- photovoltaic power prediction --- publicly available weather reports --- machine learning --- long short-term memory --- integrated energy systems --- smart energy management --- PV fleet --- clustering-based PV fault detection --- unsupervised learning --- self-imputation --- implicit model solution --- photovoltaic array --- series–parallel --- global optimization --- partial shading --- deterministic optimization algorithm --- metaheuristic optimization algorithm --- genetic algorithm --- solar cell optimization --- finite difference time domain --- optical modelling --- thermal image --- photovoltaic module --- hot spot --- image processing --- deterioration --- linear approximation --- MPPT algorithm --- duty cycle --- global horizontal irradiance --- mathematical modeling --- feed-forward neural networks --- recurrent neural networks --- LSTM cell --- performances evaluation --- clear sky irradiance --- persistent predictor --- photovoltaics --- artificial neural networks --- national power system


Book
Applied Mathematics and Computational Physics
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

As faster and more efficient numerical algorithms become available, the understanding of the physics and the mathematical foundation behind these new methods will play an increasingly important role. This Special Issue provides a platform for researchers from both academia and industry to present their novel computational methods that have engineering and physics applications.

Keywords

Research & information: general --- Mathematics & science --- radial basis functions --- finite difference methods --- traveling waves --- non-uniform grids --- chaotic oscillator --- one-step method --- multi-step method --- computer arithmetic --- FPGA --- high strain rate impact --- modeling and simulation --- smoothed particle hydrodynamics --- finite element analysis --- hybrid nanofluid --- heat transfer --- non-isothermal --- shrinking surface --- MHD --- radiation --- multilayer perceptrons --- quaternion neural networks --- metaheuristic optimization --- genetic algorithms --- micropolar fluid --- constricted channel --- MHD pulsatile flow --- strouhal number --- flow pulsation parameter --- multiple integral finite volume method --- finite difference method --- Rosenau-KdV --- conservation --- solvability --- convergence --- transmission electron microscopy (TEM) --- convolutional neural networks (CNN) --- anomaly detection --- principal component analysis (PCA) --- machine learning --- deep learning --- neural networks --- Gallium-Arsenide (GaAs) --- radiation-based flowmeter --- two-phase flow --- feature extraction --- artificial intelligence --- time domain --- Boltzmann equation --- collision integral --- convolutional neural network --- annular regime --- scale layer-independent --- petroleum pipeline --- volume fraction --- dual energy technique --- prescribed heat flux --- similarity solutions --- dual solutions --- stability analysis --- RBF-FD --- node sampling --- lebesgue constant --- complex regions --- finite-difference methods --- data assimilation --- model order reduction --- finite elements analysis --- high dimensional data --- welding --- radial basis functions --- finite difference methods --- traveling waves --- non-uniform grids --- chaotic oscillator --- one-step method --- multi-step method --- computer arithmetic --- FPGA --- high strain rate impact --- modeling and simulation --- smoothed particle hydrodynamics --- finite element analysis --- hybrid nanofluid --- heat transfer --- non-isothermal --- shrinking surface --- MHD --- radiation --- multilayer perceptrons --- quaternion neural networks --- metaheuristic optimization --- genetic algorithms --- micropolar fluid --- constricted channel --- MHD pulsatile flow --- strouhal number --- flow pulsation parameter --- multiple integral finite volume method --- finite difference method --- Rosenau-KdV --- conservation --- solvability --- convergence --- transmission electron microscopy (TEM) --- convolutional neural networks (CNN) --- anomaly detection --- principal component analysis (PCA) --- machine learning --- deep learning --- neural networks --- Gallium-Arsenide (GaAs) --- radiation-based flowmeter --- two-phase flow --- feature extraction --- artificial intelligence --- time domain --- Boltzmann equation --- collision integral --- convolutional neural network --- annular regime --- scale layer-independent --- petroleum pipeline --- volume fraction --- dual energy technique --- prescribed heat flux --- similarity solutions --- dual solutions --- stability analysis --- RBF-FD --- node sampling --- lebesgue constant --- complex regions --- finite-difference methods --- data assimilation --- model order reduction --- finite elements analysis --- high dimensional data --- welding


Book
Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a Special Issue Reprint edited by Prof. Massimo Vitelli and Dr. Luigi Costanzo. It contains original research articles covering, but not limited to, the following topics: maximum power point tracking techniques; forecasting techniques; sizing and optimization of PV components and systems; PV modeling; reconfiguration algorithms; fault diagnosis; mismatching detection; decision processes for grid operators.

Keywords

History of engineering & technology --- sensor network --- data fusion --- complex network analysis --- fault prognosis --- photovoltaic plants --- ANFIS --- statistical method --- gradient descent --- photovoltaic system --- sustainable development --- PV power prediction --- artificial neural network --- renewable energy --- environmental parameters --- multiple regression model --- moth-flame optimization --- parameter extraction --- photovoltaic model --- double flames generation (DFG) strategy --- Solar cell parameters --- single-diode model --- two-diode model --- COA --- photovoltaic systems --- maximum power point tracking --- single stage grid connected systems --- solar concentrator --- spectral beam splitting --- diffractive optical element --- diffractive grating --- PVs power output forecasting --- adaptive neuro-fuzzy inference systems --- particle swarm optimization-artificial neural networks --- solar irradiation --- photovoltaic power prediction --- publicly available weather reports --- machine learning --- long short-term memory --- integrated energy systems --- smart energy management --- PV fleet --- clustering-based PV fault detection --- unsupervised learning --- self-imputation --- implicit model solution --- photovoltaic array --- series–parallel --- global optimization --- partial shading --- deterministic optimization algorithm --- metaheuristic optimization algorithm --- genetic algorithm --- solar cell optimization --- finite difference time domain --- optical modelling --- thermal image --- photovoltaic module --- hot spot --- image processing --- deterioration --- linear approximation --- MPPT algorithm --- duty cycle --- global horizontal irradiance --- mathematical modeling --- feed-forward neural networks --- recurrent neural networks --- LSTM cell --- performances evaluation --- clear sky irradiance --- persistent predictor --- photovoltaics --- artificial neural networks --- national power system


Book
Grid-Connected Renewable Energy Sources
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of renewable energy sources (RESs) is a need of global society. This editorial, and its associated Special Issue “Grid-Connected Renewable Energy Sources”, offers a compilation of some of the recent advances in the analysis of current power systems that are composed after the high penetration of distributed generation (DG) with different RESs. The focus is on both new control configurations and on novel methodologies for the optimal placement and sizing of DG. The eleven accepted papers certainly provide a good contribution to control deployments and methodologies for the allocation and sizing of DG.

Keywords

Research & information: general --- Technology: general issues --- solar energy --- wind energy --- energy storage --- renewable energy integration --- Europe --- advanced metering infrastructure --- data acquisition --- IEC standards --- low-cost --- open source --- power measurement --- smart meter --- uncertainty evaluation --- frequency stabilization --- coordinated control --- wind turbine generator --- high-fidelity battery model --- releasable and absorbable energy --- photovoltaic emulator --- photovoltaic panel --- single diode model --- MPPT --- FSWT-SCIG --- battery storage system --- power system stability --- synchronous generator --- hybrid system --- voltage source converter --- passivity-based control --- proportional-integral control --- voltage regulation --- bi-directional converter --- LC impedance source converter --- DC–DC power converter --- bi-directional power flow --- alternating current networks --- direct current networks --- optimal power flow --- non-linear optimization --- control of power electronic converters --- distributed generation --- mixed-integer nonlinear programming --- second-cone programming --- discrete-sine cosine algorithm --- metaheuristic optimization --- DG placement --- evolutionary algorithms --- energy management --- fuzzy controller --- power systems analysis --- interconnected power systems --- latencies --- time-delay effects --- wide area monitoring systems --- renewable energy conversion --- power conditioning devices --- renewable energy policies --- power quality --- computations methods --- control strategies --- electric vehicle charging --- energy management systems --- ancillary services --- monitoring --- prognostic and diagnostic


Book
Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a Special Issue Reprint edited by Prof. Massimo Vitelli and Dr. Luigi Costanzo. It contains original research articles covering, but not limited to, the following topics: maximum power point tracking techniques; forecasting techniques; sizing and optimization of PV components and systems; PV modeling; reconfiguration algorithms; fault diagnosis; mismatching detection; decision processes for grid operators.

Keywords

sensor network --- data fusion --- complex network analysis --- fault prognosis --- photovoltaic plants --- ANFIS --- statistical method --- gradient descent --- photovoltaic system --- sustainable development --- PV power prediction --- artificial neural network --- renewable energy --- environmental parameters --- multiple regression model --- moth-flame optimization --- parameter extraction --- photovoltaic model --- double flames generation (DFG) strategy --- Solar cell parameters --- single-diode model --- two-diode model --- COA --- photovoltaic systems --- maximum power point tracking --- single stage grid connected systems --- solar concentrator --- spectral beam splitting --- diffractive optical element --- diffractive grating --- PVs power output forecasting --- adaptive neuro-fuzzy inference systems --- particle swarm optimization-artificial neural networks --- solar irradiation --- photovoltaic power prediction --- publicly available weather reports --- machine learning --- long short-term memory --- integrated energy systems --- smart energy management --- PV fleet --- clustering-based PV fault detection --- unsupervised learning --- self-imputation --- implicit model solution --- photovoltaic array --- series–parallel --- global optimization --- partial shading --- deterministic optimization algorithm --- metaheuristic optimization algorithm --- genetic algorithm --- solar cell optimization --- finite difference time domain --- optical modelling --- thermal image --- photovoltaic module --- hot spot --- image processing --- deterioration --- linear approximation --- MPPT algorithm --- duty cycle --- global horizontal irradiance --- mathematical modeling --- feed-forward neural networks --- recurrent neural networks --- LSTM cell --- performances evaluation --- clear sky irradiance --- persistent predictor --- photovoltaics --- artificial neural networks --- national power system


Book
Applied Mathematics and Computational Physics
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

As faster and more efficient numerical algorithms become available, the understanding of the physics and the mathematical foundation behind these new methods will play an increasingly important role. This Special Issue provides a platform for researchers from both academia and industry to present their novel computational methods that have engineering and physics applications.

Keywords

radial basis functions --- finite difference methods --- traveling waves --- non-uniform grids --- chaotic oscillator --- one-step method --- multi-step method --- computer arithmetic --- FPGA --- high strain rate impact --- modeling and simulation --- smoothed particle hydrodynamics --- finite element analysis --- hybrid nanofluid --- heat transfer --- non-isothermal --- shrinking surface --- MHD --- radiation --- multilayer perceptrons --- quaternion neural networks --- metaheuristic optimization --- genetic algorithms --- micropolar fluid --- constricted channel --- MHD pulsatile flow --- strouhal number --- flow pulsation parameter --- multiple integral finite volume method --- finite difference method --- Rosenau-KdV --- conservation --- solvability --- convergence --- transmission electron microscopy (TEM) --- convolutional neural networks (CNN) --- anomaly detection --- principal component analysis (PCA) --- machine learning --- deep learning --- neural networks --- Gallium-Arsenide (GaAs) --- radiation-based flowmeter --- two-phase flow --- feature extraction --- artificial intelligence --- time domain --- Boltzmann equation --- collision integral --- convolutional neural network --- annular regime --- scale layer-independent --- petroleum pipeline --- volume fraction --- dual energy technique --- prescribed heat flux --- similarity solutions --- dual solutions --- stability analysis --- RBF-FD --- node sampling --- lebesgue constant --- complex regions --- finite-difference methods --- data assimilation --- model order reduction --- finite elements analysis --- high dimensional data --- welding

Listing 1 - 10 of 13 << page
of 2
>>
Sort by