Listing 1 - 6 of 6 |
Sort by
|
Choose an application
This Special Issue aims to be a compilation of new results in the areas of differential and difference Equations, covering boundary value problems, systems of differential and difference equations, as well as analytical and numerical methods. The objective is to provide an overview of techniques used in these different areas and to emphasize their applicability to real-life phenomena, by the inclusion of examples. These examples not only clarify the theoretical results presented, but also provide insight on how to apply, for future works, the techniques used.
heteroclinic solutions --- non-instantaneous impulses --- Schauder’s fixed point theory --- dichotomy --- second-order differential/difference/q-difference equation of hypergeometric type --- differential equations --- a priori estimates --- global solutions --- generalized Liouville equation --- Hilbert space --- dissipation --- collocation method --- exponential dichotomy --- Sumudu decomposition method --- three-step Taylor method --- dynamical system --- lower and upper solutions --- problems in the real line --- Nagumo condition on the real line --- SIRS epidemic model --- first order periodic systems --- regular solutions --- Clairin’s method --- coupled nonlinear systems --- Navier–Stokes equations --- Bäcklund transformation --- asymptotic stability --- Caputo fractional derivative --- exponential stability --- difference equations --- lipschitz stability --- strong nonlinearities --- polynomial solution --- integro-differentials --- kinetic energy --- Legendre wavelets --- weak solutions --- discrete Lyapunov equation --- population dynamics --- non-uniform lattices --- Korteweg-de Vries equation --- time-dependent partial differential equations --- mean curvature operator --- functional boundary conditions --- mathematical modelling --- fixed point theory --- limit-periodic solutions --- Arzèla Ascoli theorem --- Miura transformation --- state dependent delays --- ?-Laplacian operator --- divided-difference equations --- effective existence criteria
Choose an application
During the past decades, the subject of calculus of integrals and derivatives of any arbitrary real or complex order has gained considerable popularity and impact. This is mainly due to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. In connection with this, great importance is attached to the publication of results that focus on recent and novel developments in the theory of any types of differential and fractional differential equation and inclusions, especially covering analytical and numerical research for such kinds of equations. This book is a compilation of articles from a Special Issue of Mathematics devoted to the topic of “Recent Investigations of Differential and Fractional Equations and Inclusions”. It contains some theoretical works and approximate methods in fractional differential equations and inclusions as well as fuzzy integrodifferential equations. Many of the papers were supported by the Bulgarian National Science Fund under Project KP-06-N32/7. Overall, the volume is an excellent witness of the relevance of the theory of fractional differential equations.
Research & information: general --- Mathematics & science --- weakly upper semicontinuous --- essential maps --- homotopy --- Riemann-Liouville fractional differential equation --- delay --- lower and upper solutions --- monotone-iterative technique --- homoclinic solutions --- fourth-order p-Laplacian differential equations --- minimization theorem --- Clark’s theorem --- exponential dichotomy --- roughness --- asymptotically constant matrices --- double fuzzy Sumudu transform --- partial Volterra fuzzy integro-differential equations --- n-th order fuzzy partial H-derivative --- m-dissipative operators --- limit solutions --- integral solutions --- one-sided Perron condition --- Banach spaces --- fixed point --- complete metric space --- fractional differential equations --- optimal feedback control --- Voigt model --- alpha-model --- fractional derivative --- Riemann–Liouville fractional differential equations --- nonlocal boundary conditions --- positive solutions --- existence --- multiplicity --- Caputo derivative --- Riemann–Liouville integral --- multipoint and sub-strip boundary conditions --- fixed point theorem --- fractional Navier–Stokes equations --- variable delay --- modified fractional Halanay inequality --- generalized comparison principle --- dissipativity --- Fourier-Laplace transforms --- porous material --- eigenvalues method --- fractional time derivative
Choose an application
During the past decades, the subject of calculus of integrals and derivatives of any arbitrary real or complex order has gained considerable popularity and impact. This is mainly due to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. In connection with this, great importance is attached to the publication of results that focus on recent and novel developments in the theory of any types of differential and fractional differential equation and inclusions, especially covering analytical and numerical research for such kinds of equations. This book is a compilation of articles from a Special Issue of Mathematics devoted to the topic of “Recent Investigations of Differential and Fractional Equations and Inclusions”. It contains some theoretical works and approximate methods in fractional differential equations and inclusions as well as fuzzy integrodifferential equations. Many of the papers were supported by the Bulgarian National Science Fund under Project KP-06-N32/7. Overall, the volume is an excellent witness of the relevance of the theory of fractional differential equations.
weakly upper semicontinuous --- essential maps --- homotopy --- Riemann-Liouville fractional differential equation --- delay --- lower and upper solutions --- monotone-iterative technique --- homoclinic solutions --- fourth-order p-Laplacian differential equations --- minimization theorem --- Clark’s theorem --- exponential dichotomy --- roughness --- asymptotically constant matrices --- double fuzzy Sumudu transform --- partial Volterra fuzzy integro-differential equations --- n-th order fuzzy partial H-derivative --- m-dissipative operators --- limit solutions --- integral solutions --- one-sided Perron condition --- Banach spaces --- fixed point --- complete metric space --- fractional differential equations --- optimal feedback control --- Voigt model --- alpha-model --- fractional derivative --- Riemann–Liouville fractional differential equations --- nonlocal boundary conditions --- positive solutions --- existence --- multiplicity --- Caputo derivative --- Riemann–Liouville integral --- multipoint and sub-strip boundary conditions --- fixed point theorem --- fractional Navier–Stokes equations --- variable delay --- modified fractional Halanay inequality --- generalized comparison principle --- dissipativity --- Fourier-Laplace transforms --- porous material --- eigenvalues method --- fractional time derivative
Choose an application
During the past decades, the subject of calculus of integrals and derivatives of any arbitrary real or complex order has gained considerable popularity and impact. This is mainly due to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. In connection with this, great importance is attached to the publication of results that focus on recent and novel developments in the theory of any types of differential and fractional differential equation and inclusions, especially covering analytical and numerical research for such kinds of equations. This book is a compilation of articles from a Special Issue of Mathematics devoted to the topic of “Recent Investigations of Differential and Fractional Equations and Inclusions”. It contains some theoretical works and approximate methods in fractional differential equations and inclusions as well as fuzzy integrodifferential equations. Many of the papers were supported by the Bulgarian National Science Fund under Project KP-06-N32/7. Overall, the volume is an excellent witness of the relevance of the theory of fractional differential equations.
Research & information: general --- Mathematics & science --- weakly upper semicontinuous --- essential maps --- homotopy --- Riemann-Liouville fractional differential equation --- delay --- lower and upper solutions --- monotone-iterative technique --- homoclinic solutions --- fourth-order p-Laplacian differential equations --- minimization theorem --- Clark’s theorem --- exponential dichotomy --- roughness --- asymptotically constant matrices --- double fuzzy Sumudu transform --- partial Volterra fuzzy integro-differential equations --- n-th order fuzzy partial H-derivative --- m-dissipative operators --- limit solutions --- integral solutions --- one-sided Perron condition --- Banach spaces --- fixed point --- complete metric space --- fractional differential equations --- optimal feedback control --- Voigt model --- alpha-model --- fractional derivative --- Riemann–Liouville fractional differential equations --- nonlocal boundary conditions --- positive solutions --- existence --- multiplicity --- Caputo derivative --- Riemann–Liouville integral --- multipoint and sub-strip boundary conditions --- fixed point theorem --- fractional Navier–Stokes equations --- variable delay --- modified fractional Halanay inequality --- generalized comparison principle --- dissipativity --- Fourier-Laplace transforms --- porous material --- eigenvalues method --- fractional time derivative
Choose an application
During the last decade, there has been an increased interest in fractional differential equations, inclusions, and inequalities, as they play a fundamental role in the modeling of numerous phenomena, in particular, in physics, biomathematics, blood flow phenomena, ecology, environmental issues, viscoelasticity, aerodynamics, electrodynamics of complex medium, electrical circuits, electron-analytical chemistry, control theory, etc. This book presents collective works published in the recent Special Issue (SI) entitled "Fractional Differential Equation, Inclusions and Inequalities with Applications" of the journal Mathematics. This Special Issue presents recent developments in the theory of fractional differential equations and inequalities. Topics include but are not limited to the existence and uniqueness results for boundary value problems for different types of fractional differential equations, a variety of fractional inequalities, impulsive fractional differential equations, and applications in sciences and engineering.
fractional evolution inclusions --- mild solutions --- condensing multivalued map --- arbitrary order differential equations --- multiple positive solution --- Perov-type fixed point theorem --- HU stability --- Caputo fractional derivative --- nonlocal --- integro-multipoint boundary conditions --- existence --- uniqueness --- Ulam-Hyers stability --- coupled system of fractional difference equations --- fractional sum --- discrete half-line --- non-instantaneous impulsive equations --- random impulsive and junction points --- continuous dependence --- Caputo–Fabrizio fractional differential equations --- Hyers–Ulam stability --- fractional derivative --- fixed point theorem --- fractional differential equation --- fractional sum-difference equations --- boundary value problem --- positive solution --- green function --- the method of lower and upper solutions --- three-point boundary-value problem --- Caputo’s fractional derivative --- Riemann-Liouville fractional integral --- fixed-point theorems --- Langevin equation --- generalized fractional integral --- generalized Liouville–Caputo derivative --- nonlocal boundary conditions --- fixed point --- fractional differential inclusions --- ψ-Riesz-Caputo derivative --- existence of solutions --- anti-periodic boundary value problems --- q-integro-difference equation --- fractional calculus --- fractional integrals --- Ostrowski type inequality --- convex function --- exponentially convex function --- generalized Riemann-liouville fractional integrals --- convex functions --- Hermite–Hadamard-type inequalities --- exponential kernel --- caputo fractional derivative --- coupled system --- impulses --- existence theory --- stability theory --- conformable derivative --- conformable partial derivative --- conformable double Laplace decomposition method --- conformable Laplace transform --- singular one dimensional coupled Burgers’ equation --- Green’s function --- existence and uniqueness of solution --- positivity of solution --- iterative method --- Riemann–Liouville type fractional problem --- positive solutions --- the index of fixed point --- matrix theory --- differential inclusions --- Caputo-type fractional derivative --- fractional integral --- time-fractional diffusion equation --- inverse problem --- ill-posed problem --- convergence estimates --- s-convex function --- Hermite–Hadamard inequalities --- Riemann–Liouville fractional integrals --- fractal space --- functional fractional differential inclusions --- Hadamard fractional derivative --- Katugampola fractional integrals --- Hermite–Hadamard inequality --- fractional q-difference inclusion --- measure of noncompactness --- solution --- proportional fractional integrals --- inequalities --- Qi inequality --- caputo-type fractional derivative --- fractional derivatives --- neutral fractional systems --- distributed delay --- integral representation --- fractional hardy’s inequality --- fractional bennett’s inequality --- fractional copson’s inequality --- fractional leindler’s inequality --- timescales --- conformable fractional calculus --- fractional hölder inequality --- sequential fractional delta-nabla sum-difference equations --- nonlocal fractional delta-nabla sum boundary value problem --- hadamard proportional fractional integrals --- fractional integral inequalities --- Hermite–Hadamard type inequalities --- interval-valued functions
Choose an application
During the last decade, there has been an increased interest in fractional differential equations, inclusions, and inequalities, as they play a fundamental role in the modeling of numerous phenomena, in particular, in physics, biomathematics, blood flow phenomena, ecology, environmental issues, viscoelasticity, aerodynamics, electrodynamics of complex medium, electrical circuits, electron-analytical chemistry, control theory, etc. This book presents collective works published in the recent Special Issue (SI) entitled "Fractional Differential Equation, Inclusions and Inequalities with Applications" of the journal Mathematics. This Special Issue presents recent developments in the theory of fractional differential equations and inequalities. Topics include but are not limited to the existence and uniqueness results for boundary value problems for different types of fractional differential equations, a variety of fractional inequalities, impulsive fractional differential equations, and applications in sciences and engineering.
Research & information: general --- Mathematics & science --- fractional evolution inclusions --- mild solutions --- condensing multivalued map --- arbitrary order differential equations --- multiple positive solution --- Perov-type fixed point theorem --- HU stability --- Caputo fractional derivative --- nonlocal --- integro-multipoint boundary conditions --- existence --- uniqueness --- Ulam-Hyers stability --- coupled system of fractional difference equations --- fractional sum --- discrete half-line --- non-instantaneous impulsive equations --- random impulsive and junction points --- continuous dependence --- Caputo–Fabrizio fractional differential equations --- Hyers–Ulam stability --- fractional derivative --- fixed point theorem --- fractional differential equation --- fractional sum-difference equations --- boundary value problem --- positive solution --- green function --- the method of lower and upper solutions --- three-point boundary-value problem --- Caputo’s fractional derivative --- Riemann-Liouville fractional integral --- fixed-point theorems --- Langevin equation --- generalized fractional integral --- generalized Liouville–Caputo derivative --- nonlocal boundary conditions --- fixed point --- fractional differential inclusions --- ψ-Riesz-Caputo derivative --- existence of solutions --- anti-periodic boundary value problems --- q-integro-difference equation --- fractional calculus --- fractional integrals --- Ostrowski type inequality --- convex function --- exponentially convex function --- generalized Riemann-liouville fractional integrals --- convex functions --- Hermite–Hadamard-type inequalities --- exponential kernel --- caputo fractional derivative --- coupled system --- impulses --- existence theory --- stability theory --- conformable derivative --- conformable partial derivative --- conformable double Laplace decomposition method --- conformable Laplace transform --- singular one dimensional coupled Burgers’ equation --- Green’s function --- existence and uniqueness of solution --- positivity of solution --- iterative method --- Riemann–Liouville type fractional problem --- positive solutions --- the index of fixed point --- matrix theory --- differential inclusions --- Caputo-type fractional derivative --- fractional integral --- time-fractional diffusion equation --- inverse problem --- ill-posed problem --- convergence estimates --- s-convex function --- Hermite–Hadamard inequalities --- Riemann–Liouville fractional integrals --- fractal space --- functional fractional differential inclusions --- Hadamard fractional derivative --- Katugampola fractional integrals --- Hermite–Hadamard inequality --- fractional q-difference inclusion --- measure of noncompactness --- solution --- proportional fractional integrals --- inequalities --- Qi inequality --- caputo-type fractional derivative --- fractional derivatives --- neutral fractional systems --- distributed delay --- integral representation --- fractional hardy’s inequality --- fractional bennett’s inequality --- fractional copson’s inequality --- fractional leindler’s inequality --- timescales --- conformable fractional calculus --- fractional hölder inequality --- sequential fractional delta-nabla sum-difference equations --- nonlocal fractional delta-nabla sum boundary value problem --- hadamard proportional fractional integrals --- fractional integral inequalities --- Hermite–Hadamard type inequalities --- interval-valued functions
Listing 1 - 6 of 6 |
Sort by
|