Listing 1 - 3 of 3 |
Sort by
|
Choose an application
In the past, osseointegration was regarded to be a mode of implant anchorage that simulated a simple wound healing phenomenon. Today, we have evidence that osseointegration is, in fact, a foreign body reaction that involves an immunologically derived bony demarcation of an implant to shield it off from the tissues. Marginal bone resorption around an oral implant cannot be properly understood without realizing the foreign body nature of the implant itself. Whereas the immunological response as such is positive for implant longevity, adverse immunological reactions may cause marginal bone loss in combination with combined factors. Combined factors include the hardware, clinical handling as well as patient characteristics that, even if each one of these factors only produce subliminal trauma, when acting together they may result in loss of marginal bone. The role of bacteria in the process of marginal bone loss is smaller than previously believed due to combined defense mechanisms of inflammation and immunological reactions, but if the defense is failing we may see bacterially induced marginal bone loss as well. However, problems with loss of marginal bone threatening implant survival remains relatively uncommon; we have today 10 years of clinical documentation of five different types of implant displaying a failure rate in the range of only 1 to 4 %.
Medicine --- osseointegration --- dental implant --- peri-implantitis --- ligature-induced peri-implantitis --- aseptic loosening --- systematic review --- immune system --- biomaterials --- foreign body reaction --- in vivo study --- oral implants --- marginal bone loss --- immunomodulation --- mechanotransduction --- Crestal bone loss --- osseosufficiency --- osseoseparation --- photoacoustic ultrasound --- brain–bone axis --- overloading --- radiography --- CBCT (cone beam computerized tomography) --- osteogenesis --- osteotomy --- bone healing --- bone chips --- drilling tool design --- fused deposition modeling --- polyether ether ketone --- biocomposite --- orthopedic implant --- oral implant --- mechanical properties --- wettability --- topography --- biocompatibility --- cell adhesion --- peri-implant endosseous healing --- dental implantation --- alveolar bone loss --- alveolar bone remodeling/regeneration --- bone biology --- finite element analysis (FEA) --- biomechanics --- cell plasticity --- dental implants --- electron microscopy --- scanning transmission electron microscopy --- bone-implant interface --- bone loss --- overdenture --- implant survival --- implant surface --- soft tissue --- split-mouth design --- oral health-related quality of life --- patient-reported outcome measures --- biomaterial --- bone --- immune --- implant --- healing --- titanium --- PEEK --- Cu --- micro-RNA --- microarray --- predictive biomarker --- epigenomics --- mucositis --- diagnosis --- over-treatment --- iatrogenic damage --- abutment height --- subcrestal implants --- implant insertion depth --- vertical mucosal thickness --- biological width --- implant installation --- anchorage technique --- histology --- intraosseous temperature --- finite element model --- ligature induced peri-implantitis --- arthroplasty --- replacement --- hip --- hypersensitivity --- contact --- allergy and immunology --- cytokines --- Interleukin-8 --- surface properties --- materials testing --- implant contamination --- scanning electron microscopy --- energy-dispersive X-ray spectrometry --- convergence --- clinical study --- biofilm --- infection --- perio-prosthetic joint infection --- periimplantitis --- electrolytic cleaning --- n/a --- zirconia --- insertion --- bone–implant interface --- heat --- bone damage --- early loss --- augmentation --- air flow --- re-osseointegration --- classification of bone defects --- dog study --- brain-bone axis
Choose an application
In the past, osseointegration was regarded to be a mode of implant anchorage that simulated a simple wound healing phenomenon. Today, we have evidence that osseointegration is, in fact, a foreign body reaction that involves an immunologically derived bony demarcation of an implant to shield it off from the tissues. Marginal bone resorption around an oral implant cannot be properly understood without realizing the foreign body nature of the implant itself. Whereas the immunological response as such is positive for implant longevity, adverse immunological reactions may cause marginal bone loss in combination with combined factors. Combined factors include the hardware, clinical handling as well as patient characteristics that, even if each one of these factors only produce subliminal trauma, when acting together they may result in loss of marginal bone. The role of bacteria in the process of marginal bone loss is smaller than previously believed due to combined defense mechanisms of inflammation and immunological reactions, but if the defense is failing we may see bacterially induced marginal bone loss as well. However, problems with loss of marginal bone threatening implant survival remains relatively uncommon; we have today 10 years of clinical documentation of five different types of implant displaying a failure rate in the range of only 1 to 4 %.
osseointegration --- dental implant --- peri-implantitis --- ligature-induced peri-implantitis --- aseptic loosening --- systematic review --- immune system --- biomaterials --- foreign body reaction --- in vivo study --- oral implants --- marginal bone loss --- immunomodulation --- mechanotransduction --- Crestal bone loss --- osseosufficiency --- osseoseparation --- photoacoustic ultrasound --- brain–bone axis --- overloading --- radiography --- CBCT (cone beam computerized tomography) --- osteogenesis --- osteotomy --- bone healing --- bone chips --- drilling tool design --- fused deposition modeling --- polyether ether ketone --- biocomposite --- orthopedic implant --- oral implant --- mechanical properties --- wettability --- topography --- biocompatibility --- cell adhesion --- peri-implant endosseous healing --- dental implantation --- alveolar bone loss --- alveolar bone remodeling/regeneration --- bone biology --- finite element analysis (FEA) --- biomechanics --- cell plasticity --- dental implants --- electron microscopy --- scanning transmission electron microscopy --- bone-implant interface --- bone loss --- overdenture --- implant survival --- implant surface --- soft tissue --- split-mouth design --- oral health-related quality of life --- patient-reported outcome measures --- biomaterial --- bone --- immune --- implant --- healing --- titanium --- PEEK --- Cu --- micro-RNA --- microarray --- predictive biomarker --- epigenomics --- mucositis --- diagnosis --- over-treatment --- iatrogenic damage --- abutment height --- subcrestal implants --- implant insertion depth --- vertical mucosal thickness --- biological width --- implant installation --- anchorage technique --- histology --- intraosseous temperature --- finite element model --- ligature induced peri-implantitis --- arthroplasty --- replacement --- hip --- hypersensitivity --- contact --- allergy and immunology --- cytokines --- Interleukin-8 --- surface properties --- materials testing --- implant contamination --- scanning electron microscopy --- energy-dispersive X-ray spectrometry --- convergence --- clinical study --- biofilm --- infection --- perio-prosthetic joint infection --- periimplantitis --- electrolytic cleaning --- n/a --- zirconia --- insertion --- bone–implant interface --- heat --- bone damage --- early loss --- augmentation --- air flow --- re-osseointegration --- classification of bone defects --- dog study --- brain-bone axis
Choose an application
In the past, osseointegration was regarded to be a mode of implant anchorage that simulated a simple wound healing phenomenon. Today, we have evidence that osseointegration is, in fact, a foreign body reaction that involves an immunologically derived bony demarcation of an implant to shield it off from the tissues. Marginal bone resorption around an oral implant cannot be properly understood without realizing the foreign body nature of the implant itself. Whereas the immunological response as such is positive for implant longevity, adverse immunological reactions may cause marginal bone loss in combination with combined factors. Combined factors include the hardware, clinical handling as well as patient characteristics that, even if each one of these factors only produce subliminal trauma, when acting together they may result in loss of marginal bone. The role of bacteria in the process of marginal bone loss is smaller than previously believed due to combined defense mechanisms of inflammation and immunological reactions, but if the defense is failing we may see bacterially induced marginal bone loss as well. However, problems with loss of marginal bone threatening implant survival remains relatively uncommon; we have today 10 years of clinical documentation of five different types of implant displaying a failure rate in the range of only 1 to 4 %.
Medicine --- osseointegration --- dental implant --- peri-implantitis --- ligature-induced peri-implantitis --- aseptic loosening --- systematic review --- immune system --- biomaterials --- foreign body reaction --- in vivo study --- oral implants --- marginal bone loss --- immunomodulation --- mechanotransduction --- Crestal bone loss --- osseosufficiency --- osseoseparation --- photoacoustic ultrasound --- brain-bone axis --- overloading --- radiography --- CBCT (cone beam computerized tomography) --- osteogenesis --- osteotomy --- bone healing --- bone chips --- drilling tool design --- fused deposition modeling --- polyether ether ketone --- biocomposite --- orthopedic implant --- oral implant --- mechanical properties --- wettability --- topography --- biocompatibility --- cell adhesion --- peri-implant endosseous healing --- dental implantation --- alveolar bone loss --- alveolar bone remodeling/regeneration --- bone biology --- finite element analysis (FEA) --- biomechanics --- cell plasticity --- dental implants --- electron microscopy --- scanning transmission electron microscopy --- bone-implant interface --- bone loss --- overdenture --- implant survival --- implant surface --- soft tissue --- split-mouth design --- oral health-related quality of life --- patient-reported outcome measures --- biomaterial --- bone --- immune --- implant --- healing --- titanium --- PEEK --- Cu --- micro-RNA --- microarray --- predictive biomarker --- epigenomics --- mucositis --- diagnosis --- over-treatment --- iatrogenic damage --- abutment height --- subcrestal implants --- implant insertion depth --- vertical mucosal thickness --- biological width --- implant installation --- anchorage technique --- histology --- intraosseous temperature --- finite element model --- ligature induced peri-implantitis --- arthroplasty --- replacement --- hip --- hypersensitivity --- contact --- allergy and immunology --- cytokines --- Interleukin-8 --- surface properties --- materials testing --- implant contamination --- scanning electron microscopy --- energy-dispersive X-ray spectrometry --- convergence --- clinical study --- biofilm --- infection --- perio-prosthetic joint infection --- periimplantitis --- electrolytic cleaning --- zirconia --- insertion --- bone-implant interface --- heat --- bone damage --- early loss --- augmentation --- air flow --- re-osseointegration --- classification of bone defects --- dog study --- osseointegration --- dental implant --- peri-implantitis --- ligature-induced peri-implantitis --- aseptic loosening --- systematic review --- immune system --- biomaterials --- foreign body reaction --- in vivo study --- oral implants --- marginal bone loss --- immunomodulation --- mechanotransduction --- Crestal bone loss --- osseosufficiency --- osseoseparation --- photoacoustic ultrasound --- brain-bone axis --- overloading --- radiography --- CBCT (cone beam computerized tomography) --- osteogenesis --- osteotomy --- bone healing --- bone chips --- drilling tool design --- fused deposition modeling --- polyether ether ketone --- biocomposite --- orthopedic implant --- oral implant --- mechanical properties --- wettability --- topography --- biocompatibility --- cell adhesion --- peri-implant endosseous healing --- dental implantation --- alveolar bone loss --- alveolar bone remodeling/regeneration --- bone biology --- finite element analysis (FEA) --- biomechanics --- cell plasticity --- dental implants --- electron microscopy --- scanning transmission electron microscopy --- bone-implant interface --- bone loss --- overdenture --- implant survival --- implant surface --- soft tissue --- split-mouth design --- oral health-related quality of life --- patient-reported outcome measures --- biomaterial --- bone --- immune --- implant --- healing --- titanium --- PEEK --- Cu --- micro-RNA --- microarray --- predictive biomarker --- epigenomics --- mucositis --- diagnosis --- over-treatment --- iatrogenic damage --- abutment height --- subcrestal implants --- implant insertion depth --- vertical mucosal thickness --- biological width --- implant installation --- anchorage technique --- histology --- intraosseous temperature --- finite element model --- ligature induced peri-implantitis --- arthroplasty --- replacement --- hip --- hypersensitivity --- contact --- allergy and immunology --- cytokines --- Interleukin-8 --- surface properties --- materials testing --- implant contamination --- scanning electron microscopy --- energy-dispersive X-ray spectrometry --- convergence --- clinical study --- biofilm --- infection --- perio-prosthetic joint infection --- periimplantitis --- electrolytic cleaning --- zirconia --- insertion --- bone-implant interface --- heat --- bone damage --- early loss --- augmentation --- air flow --- re-osseointegration --- classification of bone defects --- dog study
Listing 1 - 3 of 3 |
Sort by
|