Narrow your search

Library

KU Leuven (5)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VDIC (2)

VIVES (2)

FARO (1)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2020 (3)

2015 (1)

2003 (2)

1985 (1)

Listing 1 - 7 of 7
Sort by

Book
Micro-optical distributed sensors for aero propulsion applications
Authors: --- --- ---
Year: 2003 Publisher: [Cleveland, Ohio] : National Aeronautics and Space Administration, Glenn Research Center,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Flame spray strain gages with improved durability and lifetimes
Authors: --- ---
Year: 2003 Publisher: [Cleveland, Ohio] : National Aeronautics and Space Administration, Glenn Research Center,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Advances in Thermal Spray Technology
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thermal spray technology has been widely adopted industrially to combat diverse forms of surface degradation caused by wear, corrosion, oxidation, high thermal load, etc. Nonetheless, improvements in coating quality are incessantly sought to further enhance durability and/or performance of components operating in increasingly aggressive environments. This has led to technology advancements on various fronts, spanning feedstock materials, process variants, torch designs, coating architectures, etc. These have also been complemented by developments in closely allied areas to accommodate novel substrate materials, explore post-treatments, investigate coating behaviour under varied harsh conditions and harness benefits of artificial intelligence/neural networking. All of the above, along with efforts to improve diagnostic tools and create reliable control systems, have been driven by the desire to achieve robust shop-floor thermal spray capabilities to consolidate existing applications and spur new ones. This book is a compilation of twelve exciting contributions made for the Special Issue on “Advances in Thermal Spray Technology”, and showcases some of the above developments that are currently attracting interest in the field.


Book
Advances in Thermal Spray Technology
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thermal spray technology has been widely adopted industrially to combat diverse forms of surface degradation caused by wear, corrosion, oxidation, high thermal load, etc. Nonetheless, improvements in coating quality are incessantly sought to further enhance durability and/or performance of components operating in increasingly aggressive environments. This has led to technology advancements on various fronts, spanning feedstock materials, process variants, torch designs, coating architectures, etc. These have also been complemented by developments in closely allied areas to accommodate novel substrate materials, explore post-treatments, investigate coating behaviour under varied harsh conditions and harness benefits of artificial intelligence/neural networking. All of the above, along with efforts to improve diagnostic tools and create reliable control systems, have been driven by the desire to achieve robust shop-floor thermal spray capabilities to consolidate existing applications and spur new ones. This book is a compilation of twelve exciting contributions made for the Special Issue on “Advances in Thermal Spray Technology”, and showcases some of the above developments that are currently attracting interest in the field.


Book
Advances in Thermal Spray Technology
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thermal spray technology has been widely adopted industrially to combat diverse forms of surface degradation caused by wear, corrosion, oxidation, high thermal load, etc. Nonetheless, improvements in coating quality are incessantly sought to further enhance durability and/or performance of components operating in increasingly aggressive environments. This has led to technology advancements on various fronts, spanning feedstock materials, process variants, torch designs, coating architectures, etc. These have also been complemented by developments in closely allied areas to accommodate novel substrate materials, explore post-treatments, investigate coating behaviour under varied harsh conditions and harness benefits of artificial intelligence/neural networking. All of the above, along with efforts to improve diagnostic tools and create reliable control systems, have been driven by the desire to achieve robust shop-floor thermal spray capabilities to consolidate existing applications and spur new ones. This book is a compilation of twelve exciting contributions made for the Special Issue on “Advances in Thermal Spray Technology”, and showcases some of the above developments that are currently attracting interest in the field.

Keywords

History of engineering & technology --- carbon/carbon (C/C) composites --- ultra-high temperature ceramic (UHTC) --- vacuum plasma spray (VPS) --- ablation resistance --- thermal spraying --- high velocity oxy-fuel (HVOF) --- S-phase --- expanded austenite --- 316L --- stainless steel --- thermochemical treatment --- hardening --- gas nitriding --- axial feeding --- hybrid plasma spray coating --- bovine serum solution --- sliding wear --- indentation --- double-layered TBC --- gadolinium zirconate --- suspension plasma spray --- thermal cyclic fatigue --- burner rig test --- yttria stabilized zirconia --- titanium carbide --- chromium carbide --- wear --- cold spray --- neural network --- additive manufacturing --- model --- spray angle --- profile --- amorphous --- nanocrystalline --- wear resistant --- Vickers microhardness --- plasma spraying --- high-velocity suspension flame spraying --- copper --- silver --- NiCr 80/20 --- metal coatings --- polymer coatings --- flame spraying --- icephobicity --- ice adhesion --- wettability --- coating design --- corrosion-wear performance --- dense structure --- corrosion potential --- corrosion rate --- worn surface --- HVOF --- hardmetal --- dynamic impact test --- impact wear --- Al2O3-TiO2 system --- APS --- suspension spraying --- microstructure --- morphology --- phase composition --- carbon/carbon (C/C) composites --- ultra-high temperature ceramic (UHTC) --- vacuum plasma spray (VPS) --- ablation resistance --- thermal spraying --- high velocity oxy-fuel (HVOF) --- S-phase --- expanded austenite --- 316L --- stainless steel --- thermochemical treatment --- hardening --- gas nitriding --- axial feeding --- hybrid plasma spray coating --- bovine serum solution --- sliding wear --- indentation --- double-layered TBC --- gadolinium zirconate --- suspension plasma spray --- thermal cyclic fatigue --- burner rig test --- yttria stabilized zirconia --- titanium carbide --- chromium carbide --- wear --- cold spray --- neural network --- additive manufacturing --- model --- spray angle --- profile --- amorphous --- nanocrystalline --- wear resistant --- Vickers microhardness --- plasma spraying --- high-velocity suspension flame spraying --- copper --- silver --- NiCr 80/20 --- metal coatings --- polymer coatings --- flame spraying --- icephobicity --- ice adhesion --- wettability --- coating design --- corrosion-wear performance --- dense structure --- corrosion potential --- corrosion rate --- worn surface --- HVOF --- hardmetal --- dynamic impact test --- impact wear --- Al2O3-TiO2 system --- APS --- suspension spraying --- microstructure --- morphology --- phase composition


Book
Flame Spray Technology : Method for Production of Nanopowders
Authors: ---
ISBN: 9783662471623 3662471612 9783662471616 3662471620 Year: 2015 Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This books presents a complete and updated overview of Flame Spray process, from its History to the Apparatus necessary for the synthesis of nanostructures. It addresses not only the materials produced by this technique, but also their properties, such as crystallinity and crystallite size, specific surface area, particle size and morphology. Also, the principles of nanoparticle formation are described. It is a useful read to all those interested in low cost synthesis of nanostructured powders and coatings.

Listing 1 - 7 of 7
Sort by