Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Aerodynamics. --- Optical resonance. --- Optical fibers. --- Flame spraying.
Choose an application
Strain gages. --- Heat resistant alloys. --- Scanning electron microscopy. --- Flame spraying.
Choose an application
Solid state physics --- 621.793.7 --- Metal spraying --- -Spraying, Metal --- Spraying, Thermal --- Thermal spraying --- Metal coating --- Surface hardening --- Coating by spraying. Flame spraying. Arc metallizing. Plasma metallizing --- Congresses --- Congresses. --- -Coating by spraying. Flame spraying. Arc metallizing. Plasma metallizing --- 621.793.7 Coating by spraying. Flame spraying. Arc metallizing. Plasma metallizing --- -621.793.7 Coating by spraying. Flame spraying. Arc metallizing. Plasma metallizing --- Spraying, Metal --- PAPER --- PLASTICS --- plasma arc spraid coatings --- POWDERS --- CERAMICS --- Monograph --- Paper. --- Plastics. --- Powders. --- Ceramics. --- Ceramic technology --- Industrial ceramics --- Keramics --- Building materials --- Chemistry, Technical --- Clay --- Powder --- Bulk solids --- Crystals --- Plastic materials --- Plastic products --- Polymers --- Synthetic products --- Condensation products (Chemistry) --- Elastomers --- Plasticity --- Papers --- Fibers --- Writing materials and instruments
Choose an application
Thermal spray technology has been widely adopted industrially to combat diverse forms of surface degradation caused by wear, corrosion, oxidation, high thermal load, etc. Nonetheless, improvements in coating quality are incessantly sought to further enhance durability and/or performance of components operating in increasingly aggressive environments. This has led to technology advancements on various fronts, spanning feedstock materials, process variants, torch designs, coating architectures, etc. These have also been complemented by developments in closely allied areas to accommodate novel substrate materials, explore post-treatments, investigate coating behaviour under varied harsh conditions and harness benefits of artificial intelligence/neural networking. All of the above, along with efforts to improve diagnostic tools and create reliable control systems, have been driven by the desire to achieve robust shop-floor thermal spray capabilities to consolidate existing applications and spur new ones. This book is a compilation of twelve exciting contributions made for the Special Issue on “Advances in Thermal Spray Technology”, and showcases some of the above developments that are currently attracting interest in the field.
History of engineering & technology --- carbon/carbon (C/C) composites --- ultra-high temperature ceramic (UHTC) --- vacuum plasma spray (VPS) --- ablation resistance --- thermal spraying --- high velocity oxy-fuel (HVOF) --- S-phase --- expanded austenite --- 316L --- stainless steel --- thermochemical treatment --- hardening --- gas nitriding --- axial feeding --- hybrid plasma spray coating --- bovine serum solution --- sliding wear --- indentation --- double-layered TBC --- gadolinium zirconate --- suspension plasma spray --- thermal cyclic fatigue --- burner rig test --- yttria stabilized zirconia --- titanium carbide --- chromium carbide --- wear --- cold spray --- neural network --- additive manufacturing --- model --- spray angle --- profile --- amorphous --- nanocrystalline --- wear resistant --- Vickers microhardness --- plasma spraying --- high-velocity suspension flame spraying --- copper --- silver --- NiCr 80/20 --- metal coatings --- polymer coatings --- flame spraying --- icephobicity --- ice adhesion --- wettability --- coating design --- corrosion-wear performance --- dense structure --- corrosion potential --- corrosion rate --- worn surface --- HVOF --- hardmetal --- dynamic impact test --- impact wear --- Al2O3-TiO2 system --- APS --- suspension spraying --- microstructure --- morphology --- phase composition --- n/a
Choose an application
Thermal spray technology has been widely adopted industrially to combat diverse forms of surface degradation caused by wear, corrosion, oxidation, high thermal load, etc. Nonetheless, improvements in coating quality are incessantly sought to further enhance durability and/or performance of components operating in increasingly aggressive environments. This has led to technology advancements on various fronts, spanning feedstock materials, process variants, torch designs, coating architectures, etc. These have also been complemented by developments in closely allied areas to accommodate novel substrate materials, explore post-treatments, investigate coating behaviour under varied harsh conditions and harness benefits of artificial intelligence/neural networking. All of the above, along with efforts to improve diagnostic tools and create reliable control systems, have been driven by the desire to achieve robust shop-floor thermal spray capabilities to consolidate existing applications and spur new ones. This book is a compilation of twelve exciting contributions made for the Special Issue on “Advances in Thermal Spray Technology”, and showcases some of the above developments that are currently attracting interest in the field.
carbon/carbon (C/C) composites --- ultra-high temperature ceramic (UHTC) --- vacuum plasma spray (VPS) --- ablation resistance --- thermal spraying --- high velocity oxy-fuel (HVOF) --- S-phase --- expanded austenite --- 316L --- stainless steel --- thermochemical treatment --- hardening --- gas nitriding --- axial feeding --- hybrid plasma spray coating --- bovine serum solution --- sliding wear --- indentation --- double-layered TBC --- gadolinium zirconate --- suspension plasma spray --- thermal cyclic fatigue --- burner rig test --- yttria stabilized zirconia --- titanium carbide --- chromium carbide --- wear --- cold spray --- neural network --- additive manufacturing --- model --- spray angle --- profile --- amorphous --- nanocrystalline --- wear resistant --- Vickers microhardness --- plasma spraying --- high-velocity suspension flame spraying --- copper --- silver --- NiCr 80/20 --- metal coatings --- polymer coatings --- flame spraying --- icephobicity --- ice adhesion --- wettability --- coating design --- corrosion-wear performance --- dense structure --- corrosion potential --- corrosion rate --- worn surface --- HVOF --- hardmetal --- dynamic impact test --- impact wear --- Al2O3-TiO2 system --- APS --- suspension spraying --- microstructure --- morphology --- phase composition --- n/a
Choose an application
Thermal spray technology has been widely adopted industrially to combat diverse forms of surface degradation caused by wear, corrosion, oxidation, high thermal load, etc. Nonetheless, improvements in coating quality are incessantly sought to further enhance durability and/or performance of components operating in increasingly aggressive environments. This has led to technology advancements on various fronts, spanning feedstock materials, process variants, torch designs, coating architectures, etc. These have also been complemented by developments in closely allied areas to accommodate novel substrate materials, explore post-treatments, investigate coating behaviour under varied harsh conditions and harness benefits of artificial intelligence/neural networking. All of the above, along with efforts to improve diagnostic tools and create reliable control systems, have been driven by the desire to achieve robust shop-floor thermal spray capabilities to consolidate existing applications and spur new ones. This book is a compilation of twelve exciting contributions made for the Special Issue on “Advances in Thermal Spray Technology”, and showcases some of the above developments that are currently attracting interest in the field.
History of engineering & technology --- carbon/carbon (C/C) composites --- ultra-high temperature ceramic (UHTC) --- vacuum plasma spray (VPS) --- ablation resistance --- thermal spraying --- high velocity oxy-fuel (HVOF) --- S-phase --- expanded austenite --- 316L --- stainless steel --- thermochemical treatment --- hardening --- gas nitriding --- axial feeding --- hybrid plasma spray coating --- bovine serum solution --- sliding wear --- indentation --- double-layered TBC --- gadolinium zirconate --- suspension plasma spray --- thermal cyclic fatigue --- burner rig test --- yttria stabilized zirconia --- titanium carbide --- chromium carbide --- wear --- cold spray --- neural network --- additive manufacturing --- model --- spray angle --- profile --- amorphous --- nanocrystalline --- wear resistant --- Vickers microhardness --- plasma spraying --- high-velocity suspension flame spraying --- copper --- silver --- NiCr 80/20 --- metal coatings --- polymer coatings --- flame spraying --- icephobicity --- ice adhesion --- wettability --- coating design --- corrosion-wear performance --- dense structure --- corrosion potential --- corrosion rate --- worn surface --- HVOF --- hardmetal --- dynamic impact test --- impact wear --- Al2O3-TiO2 system --- APS --- suspension spraying --- microstructure --- morphology --- phase composition --- carbon/carbon (C/C) composites --- ultra-high temperature ceramic (UHTC) --- vacuum plasma spray (VPS) --- ablation resistance --- thermal spraying --- high velocity oxy-fuel (HVOF) --- S-phase --- expanded austenite --- 316L --- stainless steel --- thermochemical treatment --- hardening --- gas nitriding --- axial feeding --- hybrid plasma spray coating --- bovine serum solution --- sliding wear --- indentation --- double-layered TBC --- gadolinium zirconate --- suspension plasma spray --- thermal cyclic fatigue --- burner rig test --- yttria stabilized zirconia --- titanium carbide --- chromium carbide --- wear --- cold spray --- neural network --- additive manufacturing --- model --- spray angle --- profile --- amorphous --- nanocrystalline --- wear resistant --- Vickers microhardness --- plasma spraying --- high-velocity suspension flame spraying --- copper --- silver --- NiCr 80/20 --- metal coatings --- polymer coatings --- flame spraying --- icephobicity --- ice adhesion --- wettability --- coating design --- corrosion-wear performance --- dense structure --- corrosion potential --- corrosion rate --- worn surface --- HVOF --- hardmetal --- dynamic impact test --- impact wear --- Al2O3-TiO2 system --- APS --- suspension spraying --- microstructure --- morphology --- phase composition
Choose an application
This books presents a complete and updated overview of Flame Spray process, from its History to the Apparatus necessary for the synthesis of nanostructures. It addresses not only the materials produced by this technique, but also their properties, such as crystallinity and crystallite size, specific surface area, particle size and morphology. Also, the principles of nanoparticle formation are described. It is a useful read to all those interested in low cost synthesis of nanostructured powders and coatings.
Materials Science. --- Ceramics, Glass, Composites, Natural Methods. --- Operating Procedures, Materials Treatment. --- Nanotechnology and Microengineering. --- Engineering. --- Structural control (Engineering). --- Ingénierie --- Contrôle des structures (Ingénierie) --- Materials. --- Chemical & Materials Engineering --- Engineering & Applied Sciences --- Chemical Engineering --- Materials Science --- Flame spraying. --- Flame deposition --- Spraying, Flame --- Materials science. --- Nanotechnology. --- Industrial engineering. --- Protective coatings --- Manufactures. --- Ceramics, Glass, Composites, Natural Materials. --- Manufacturing, Machines, Tools, Processes. --- Construction --- Industrial arts --- Technology --- Manufactured goods --- Manufactured products --- Products --- Products, Manufactured --- Commercial products --- Manufacturing industries --- Ceramics. --- Glass. --- Composites (Materials). --- Composite materials. --- Composites (Materials) --- Multiphase materials --- Reinforced solids --- Solids, Reinforced --- Two phase materials --- Materials --- Molecular technology --- Nanoscale technology --- High technology --- Amorphous substances --- Ceramics --- Glazing --- Ceramic technology --- Industrial ceramics --- Keramics --- Building materials --- Chemistry, Technical --- Clay
Listing 1 - 7 of 7 |
Sort by
|