Listing 1 - 4 of 4 |
Sort by
|
Choose an application
This Special Issue collects novel contributions from scientists in the interdisciplinary field of biomolecular evolution. Works listed here use information theoretical concepts as a core but are tightly integrated with the study of molecular processes. Applications include the analysis of phylogenetic signals to elucidate biomolecular structure and function, the study and quantification of structural dynamics and allostery, as well as models of molecular interaction specificity inspired by evolutionary cues.
Research & information: general --- Biology, life sciences --- power law --- Brownian process --- Kolmogorov complexity --- entropy --- chaos --- monofractal --- non-linear --- cumulative sum --- sequence analysis --- protein engineering --- direct coupling analysis --- evolutionary coupling analysis --- contact prediction --- phylogenetic bias --- phylogeny --- co-evolution --- coevolutionary analysis --- direct-coupling analysis --- specificity determining contacts --- sequence reweighting --- maximum entropy models --- protein contact predictions --- TEM-1 --- TOHO-1 --- PBP-A --- DD-transpeptidase --- conformational changes --- catalytic mechanism --- evolution --- epistasis --- allostery --- elastic network model --- protein conformational dynamics --- statistical inference --- mutational phenotypes --- interaction specificity --- phosphorylation --- fitness landscape --- bacterial signaling --- power law --- Brownian process --- Kolmogorov complexity --- entropy --- chaos --- monofractal --- non-linear --- cumulative sum --- sequence analysis --- protein engineering --- direct coupling analysis --- evolutionary coupling analysis --- contact prediction --- phylogenetic bias --- phylogeny --- co-evolution --- coevolutionary analysis --- direct-coupling analysis --- specificity determining contacts --- sequence reweighting --- maximum entropy models --- protein contact predictions --- TEM-1 --- TOHO-1 --- PBP-A --- DD-transpeptidase --- conformational changes --- catalytic mechanism --- evolution --- epistasis --- allostery --- elastic network model --- protein conformational dynamics --- statistical inference --- mutational phenotypes --- interaction specificity --- phosphorylation --- fitness landscape --- bacterial signaling
Choose an application
This Special Issue collects novel contributions from scientists in the interdisciplinary field of biomolecular evolution. Works listed here use information theoretical concepts as a core but are tightly integrated with the study of molecular processes. Applications include the analysis of phylogenetic signals to elucidate biomolecular structure and function, the study and quantification of structural dynamics and allostery, as well as models of molecular interaction specificity inspired by evolutionary cues.
power law --- Brownian process --- Kolmogorov complexity --- entropy --- chaos --- monofractal --- non-linear --- cumulative sum --- sequence analysis --- protein engineering --- direct coupling analysis --- evolutionary coupling analysis --- contact prediction --- phylogenetic bias --- phylogeny --- co-evolution --- coevolutionary analysis --- direct-coupling analysis --- specificity determining contacts --- sequence reweighting --- maximum entropy models --- protein contact predictions --- TEM-1 --- TOHO-1 --- PBP-A --- DD-transpeptidase --- conformational changes --- catalytic mechanism --- evolution --- epistasis --- allostery --- elastic network model --- protein conformational dynamics --- statistical inference --- mutational phenotypes --- interaction specificity --- phosphorylation --- fitness landscape --- bacterial signaling --- n/a
Choose an application
This Special Issue collects novel contributions from scientists in the interdisciplinary field of biomolecular evolution. Works listed here use information theoretical concepts as a core but are tightly integrated with the study of molecular processes. Applications include the analysis of phylogenetic signals to elucidate biomolecular structure and function, the study and quantification of structural dynamics and allostery, as well as models of molecular interaction specificity inspired by evolutionary cues.
Research & information: general --- Biology, life sciences --- power law --- Brownian process --- Kolmogorov complexity --- entropy --- chaos --- monofractal --- non-linear --- cumulative sum --- sequence analysis --- protein engineering --- direct coupling analysis --- evolutionary coupling analysis --- contact prediction --- phylogenetic bias --- phylogeny --- co-evolution --- coevolutionary analysis --- direct-coupling analysis --- specificity determining contacts --- sequence reweighting --- maximum entropy models --- protein contact predictions --- TEM-1 --- TOHO-1 --- PBP-A --- DD-transpeptidase --- conformational changes --- catalytic mechanism --- evolution --- epistasis --- allostery --- elastic network model --- protein conformational dynamics --- statistical inference --- mutational phenotypes --- interaction specificity --- phosphorylation --- fitness landscape --- bacterial signaling --- n/a
Choose an application
The origin of species has fascinated both biologists and the general public since the publication of Darwin's Origin of Species in 1859. Significant progress in understanding the process was achieved in the "modern synthesis," when Theodosius Dobzhansky, Ernst Mayr, and others reconciled Mendelian genetics with Darwin's natural selection. Although evolutionary biologists have developed significant new theory and data about speciation in the years since the modern synthesis, this book represents the first systematic attempt to summarize and generalize what mathematical models tell us about the dynamics of speciation. Fitness Landscapes and the Origin of Species presents both an overview of the forty years of previous theoretical research and the author's new results. Sergey Gavrilets uses a unified framework based on the notion of fitness landscapes introduced by Sewall Wright in 1932, generalizing this notion to explore the consequences of the huge dimensionality of fitness landscapes that correspond to biological systems. In contrast to previous theoretical work, which was based largely on numerical simulations, Gavrilets develops simple mathematical models that allow for analytical investigation and clear interpretation in biological terms. Covering controversial topics, including sympatric speciation and the effects of sexual conflict on speciation, this book builds for the first time a general, quantitative theory for the origin of species.
Models, Genetic. --- Population Genetics. --- Evolution. --- Population biology. --- Species diversity. --- Population genetics --- Evolution (Biology) --- Species --- Mathematical models. --- Adaptive radiation. --- Allele frequency. --- Allele. --- Allopatric speciation. --- Assortative mating. --- Biodiversity. --- Character displacement. --- Charles Darwin. --- Digamma function. --- Directional selection. --- Disruptive selection. --- Ecological niche. --- Ecological selection. --- Ecology. --- Ecotype. --- Error threshold (evolution). --- Evolution of dominance. --- Evolutionary biology. --- Evolutionary dynamics. --- Evolutionary ecology. --- Evolutionary radiation. --- Fisher's fundamental theorem of natural selection. --- Fisherian runaway. --- Fitness (biology). --- Fitness function. --- Fitness landscape. --- Fitness model (network theory). --- Founder effect. --- Frequency-dependent selection. --- G-test. --- Gene flow. --- Gene. --- Genetic architecture. --- Genetic association. --- Genetic correlation. --- Genetic distance. --- Genetic divergence. --- Genetic drift. --- Genetic heterogeneity. --- Genetic structure. --- Genetic variability. --- Genetic variance. --- Genetic variation. --- Genetics and the Origin of Species. --- Genotype frequency. --- Genotype-phenotype distinction. --- Genotype. --- Group selection. --- Haldane's rule. --- Haplotype. --- Hardy–Weinberg principle. --- Hybrid (biology). --- Hybrid speciation. --- Hybrid zone. --- Inbreeding. --- Linkage disequilibrium. --- Local adaptation. --- Logarithm. --- Macroevolution. --- Mate choice. --- Mating preferences. --- Mating. --- Model organism. --- Modern evolutionary synthesis. --- Mutation rate. --- Mutation–selection balance. --- Natural selection. --- Nearly neutral theory of molecular evolution. --- Neutral network (evolution). --- On the Origin of Species. --- Order statistic. --- Parapatric speciation. --- Peripatric speciation. --- Phenotype. --- Phenotypic trait. --- Polymorphism (biology). --- Population ecology. --- Population genetics. --- Population size. --- Probability. --- Quantitative genetics. --- Quantitative trait locus. --- Rate of evolution. --- Reproductive isolation. --- Reproductive success. --- Ring species. --- Segregate (taxonomy). --- Selection coefficient. --- Sexual selection. --- Spatial ecology. --- Speciation (genetic algorithm). --- Speciation. --- Species complex. --- Species–area curve. --- Stepwise mutation model. --- Sympatric speciation. --- Taxonomy (biology). --- Trait theory.
Listing 1 - 4 of 4 |
Sort by
|