Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Microalgae are photosynthetic organisms with the ability to sequester and convert atmospheric carbon dioxide into high-value bioactives, and are therefore seen as a renewable and sustainable bioresource in the fields of biofuels, aquaculture and animal feeds, bioremediation of waste, nutraceuticals, pharmaceuticals, cosmeceuticals and agriculture. Moreover, algae can adjust their metabolism according to surrounding growth conditions, and this metabolic flexibility can be exploited in industrial biotechnology with genetic and metabolic engineering, when compared to other photosynthetic organisms. The metabolome is the result of the combined effects of genetic and environmental influences on metabolic processes. Metabolomic studies can provide a global view of metabolism and thereby improve our understanding of the underlying biology. Advances in metabolomic technologies have shown utility for elucidating the mechanisms which underlie fundamental biological processes, including disease pathology. This book represents research papers based around metabolomics, to improve knowledge on the metabolome and metabolism in algae, with a focus on carbon and nitrogen resource allocation. It also describes many bioanalytical techniques and emphasizes their usefulness in microalgal biotechnology. Other aspects from an ecological, biotechnological and waste-water remediation perspective are also covered.
microalgae --- cell disruption --- ultraviolet light --- biodiesel --- Chlamydomonas reinhardtii --- Dunaliella salina --- Micractinium inermum --- metabolomics --- quenching --- gas chromatography mass spectrometry (GC-MS) --- Arthrospira platensis C1 --- bioethanol --- cyanobacteria --- genome-scale metabolic model --- glycogen --- polar lipids --- Chlorella sp. --- LC-MS --- nutrient limitation --- genetic transformation --- carotenoid --- CRTI --- phytoene desaturase --- C. fritschii --- UV-B --- PAR --- time-series --- intracellular --- extracellular --- metabolites --- GC–MS --- algae --- copper --- FT-IR --- metabolite fingerprinting --- pathway analysis --- TEM --- synchronisation --- bioassay --- biomarker --- key event --- adverse outcome pathway --- Euglena --- central metabolic pathway --- subcellular location --- chromatic adaptation --- LED --- far-red light --- growth --- photosynthesis --- mass cultivation --- pigments --- Chlorogloeopsis
Choose an application
Microalgae are photosynthetic organisms with the ability to sequester and convert atmospheric carbon dioxide into high-value bioactives, and are therefore seen as a renewable and sustainable bioresource in the fields of biofuels, aquaculture and animal feeds, bioremediation of waste, nutraceuticals, pharmaceuticals, cosmeceuticals and agriculture. Moreover, algae can adjust their metabolism according to surrounding growth conditions, and this metabolic flexibility can be exploited in industrial biotechnology with genetic and metabolic engineering, when compared to other photosynthetic organisms. The metabolome is the result of the combined effects of genetic and environmental influences on metabolic processes. Metabolomic studies can provide a global view of metabolism and thereby improve our understanding of the underlying biology. Advances in metabolomic technologies have shown utility for elucidating the mechanisms which underlie fundamental biological processes, including disease pathology. This book represents research papers based around metabolomics, to improve knowledge on the metabolome and metabolism in algae, with a focus on carbon and nitrogen resource allocation. It also describes many bioanalytical techniques and emphasizes their usefulness in microalgal biotechnology. Other aspects from an ecological, biotechnological and waste-water remediation perspective are also covered.
Research & information: general --- Biology, life sciences --- Ecological science, the Biosphere --- microalgae --- cell disruption --- ultraviolet light --- biodiesel --- Chlamydomonas reinhardtii --- Dunaliella salina --- Micractinium inermum --- metabolomics --- quenching --- gas chromatography mass spectrometry (GC-MS) --- Arthrospira platensis C1 --- bioethanol --- cyanobacteria --- genome-scale metabolic model --- glycogen --- polar lipids --- Chlorella sp. --- LC-MS --- nutrient limitation --- genetic transformation --- carotenoid --- CRTI --- phytoene desaturase --- C. fritschii --- UV-B --- PAR --- time-series --- intracellular --- extracellular --- metabolites --- GC–MS --- algae --- copper --- FT-IR --- metabolite fingerprinting --- pathway analysis --- TEM --- synchronisation --- bioassay --- biomarker --- key event --- adverse outcome pathway --- Euglena --- central metabolic pathway --- subcellular location --- chromatic adaptation --- LED --- far-red light --- growth --- photosynthesis --- mass cultivation --- pigments --- Chlorogloeopsis --- microalgae --- cell disruption --- ultraviolet light --- biodiesel --- Chlamydomonas reinhardtii --- Dunaliella salina --- Micractinium inermum --- metabolomics --- quenching --- gas chromatography mass spectrometry (GC-MS) --- Arthrospira platensis C1 --- bioethanol --- cyanobacteria --- genome-scale metabolic model --- glycogen --- polar lipids --- Chlorella sp. --- LC-MS --- nutrient limitation --- genetic transformation --- carotenoid --- CRTI --- phytoene desaturase --- C. fritschii --- UV-B --- PAR --- time-series --- intracellular --- extracellular --- metabolites --- GC–MS --- algae --- copper --- FT-IR --- metabolite fingerprinting --- pathway analysis --- TEM --- synchronisation --- bioassay --- biomarker --- key event --- adverse outcome pathway --- Euglena --- central metabolic pathway --- subcellular location --- chromatic adaptation --- LED --- far-red light --- growth --- photosynthesis --- mass cultivation --- pigments --- Chlorogloeopsis
Choose an application
All articles in the presented collection are high-quality examples of both basic and applied research. The publications collectively refer to apples, bananas, cherries, kiwi fruit, mango, grapes, green bean pods, pomegranates, sweet pepper, sweet potato tubers and tomato and are aimed at improving the postharvest quality and storage extension of fresh produce. The experimental works include the following postharvest treatments: 1-methylcycloprpene, methyl jasmonate, immersion in edible coatings (aloe, chitosan, plant extracts, nanoemulsions, ethanol, ascorbic acid and essential oils solutions), heat treatments, packaging, innovative packaging materials, low temperature, low O2 and high CO2 modified atmosphere, and non-destructible technique development to measure soluble solids with infra- and near infra-red spectroscopy. Preharvest treatments were also included, such as chitosan application, fruit kept on the vine, and cultivation under far-red light. Quality assessment was dependent on species, treatment and storage conditions in each case and included evaluation of color, bruising, water loss, organoleptic estimation and texture changes in addition to changes in the concentrations of sugars, organic acids, amino acids, fatty acids, carotenoids, tocopherols, phytosterols, phenolic compounds and aroma volatiles. Gene transcription related to ethylene biosynthesis, modification of cell wall components, synthesis of aroma compounds and lipid metabolism were also the focus of some of the articles.
Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- apple flesh --- absorption --- scattering --- soluble sugars --- 905–1650 nm --- cell wall modification --- chitosan --- ethylene biosynthesis --- fruit quality --- lignin metabolism --- postharvest quality --- preharvest treatment --- amidated graphene oxide --- sulfonated poly ether ether ketone --- modified atmosphere film --- cherry tomatoes --- food packaging --- post-harvest treatment --- jasmonate --- metabolite profiling --- lipid metabolism --- Solanum lycopersicum --- ethylene inhibition --- modified atmosphere --- carbon dioxide --- phenols --- antioxidant --- ethanol --- acetaldehyde --- Phaseolus vulgaris --- peppermint --- tea tree --- storability --- minimal processed --- ready to eat --- internal packaging --- modified atmosphere packaging --- storage quality --- transpiration --- water loss --- chilling injury --- controlled atmosphere --- far-red --- aroma --- blanching --- chilling --- synthetic pathway --- volatile --- maturity --- tomato --- flavor --- postharvest --- bruise susceptibility --- apples --- mechanical shock --- transportation --- molded fiber --- expanded polystyrene --- sweet potato --- postharvest treatment --- edible quality --- transcriptome --- mango --- bioactive --- coatings --- biodegradable --- Aloe vera --- nanotechnology --- wax coating --- natural antimicrobials --- essential oils --- nanocoatings --- post-harvest --- bioactive compounds --- quality --- preservation methods --- nanomaterials --- Capsicum annuum L. --- hot water treatment --- ascorbate-glutathione cycle --- Musa AAA --- ALDH --- aroma volatile --- ester --- enzyme characteristics --- Prunus avium --- edible coatings --- Opuntia ficus-indica extracts --- storage --- anthocyanins --- phenolic compounds --- total antioxidant capacity --- apple flesh --- absorption --- scattering --- soluble sugars --- 905–1650 nm --- cell wall modification --- chitosan --- ethylene biosynthesis --- fruit quality --- lignin metabolism --- postharvest quality --- preharvest treatment --- amidated graphene oxide --- sulfonated poly ether ether ketone --- modified atmosphere film --- cherry tomatoes --- food packaging --- post-harvest treatment --- jasmonate --- metabolite profiling --- lipid metabolism --- Solanum lycopersicum --- ethylene inhibition --- modified atmosphere --- carbon dioxide --- phenols --- antioxidant --- ethanol --- acetaldehyde --- Phaseolus vulgaris --- peppermint --- tea tree --- storability --- minimal processed --- ready to eat --- internal packaging --- modified atmosphere packaging --- storage quality --- transpiration --- water loss --- chilling injury --- controlled atmosphere --- far-red --- aroma --- blanching --- chilling --- synthetic pathway --- volatile --- maturity --- tomato --- flavor --- postharvest --- bruise susceptibility --- apples --- mechanical shock --- transportation --- molded fiber --- expanded polystyrene --- sweet potato --- postharvest treatment --- edible quality --- transcriptome --- mango --- bioactive --- coatings --- biodegradable --- Aloe vera --- nanotechnology --- wax coating --- natural antimicrobials --- essential oils --- nanocoatings --- post-harvest --- bioactive compounds --- quality --- preservation methods --- nanomaterials --- Capsicum annuum L. --- hot water treatment --- ascorbate-glutathione cycle --- Musa AAA --- ALDH --- aroma volatile --- ester --- enzyme characteristics --- Prunus avium --- edible coatings --- Opuntia ficus-indica extracts --- storage --- anthocyanins --- phenolic compounds --- total antioxidant capacity
Choose an application
All articles in the presented collection are high-quality examples of both basic and applied research. The publications collectively refer to apples, bananas, cherries, kiwi fruit, mango, grapes, green bean pods, pomegranates, sweet pepper, sweet potato tubers and tomato and are aimed at improving the postharvest quality and storage extension of fresh produce. The experimental works include the following postharvest treatments: 1-methylcycloprpene, methyl jasmonate, immersion in edible coatings (aloe, chitosan, plant extracts, nanoemulsions, ethanol, ascorbic acid and essential oils solutions), heat treatments, packaging, innovative packaging materials, low temperature, low O2 and high CO2 modified atmosphere, and non-destructible technique development to measure soluble solids with infra- and near infra-red spectroscopy. Preharvest treatments were also included, such as chitosan application, fruit kept on the vine, and cultivation under far-red light. Quality assessment was dependent on species, treatment and storage conditions in each case and included evaluation of color, bruising, water loss, organoleptic estimation and texture changes in addition to changes in the concentrations of sugars, organic acids, amino acids, fatty acids, carotenoids, tocopherols, phytosterols, phenolic compounds and aroma volatiles. Gene transcription related to ethylene biosynthesis, modification of cell wall components, synthesis of aroma compounds and lipid metabolism were also the focus of some of the articles.
Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- apple flesh --- absorption --- scattering --- soluble sugars --- 905–1650 nm --- cell wall modification --- chitosan --- ethylene biosynthesis --- fruit quality --- lignin metabolism --- postharvest quality --- preharvest treatment --- amidated graphene oxide --- sulfonated poly ether ether ketone --- modified atmosphere film --- cherry tomatoes --- food packaging --- post-harvest treatment --- jasmonate --- metabolite profiling --- lipid metabolism --- Solanum lycopersicum --- ethylene inhibition --- modified atmosphere --- carbon dioxide --- phenols --- antioxidant --- ethanol --- acetaldehyde --- Phaseolus vulgaris --- peppermint --- tea tree --- storability --- minimal processed --- ready to eat --- internal packaging --- modified atmosphere packaging --- storage quality --- transpiration --- water loss --- chilling injury --- controlled atmosphere --- far-red --- aroma --- blanching --- chilling --- synthetic pathway --- volatile --- maturity --- tomato --- flavor --- postharvest --- bruise susceptibility --- apples --- mechanical shock --- transportation --- molded fiber --- expanded polystyrene --- sweet potato --- postharvest treatment --- edible quality --- transcriptome --- mango --- bioactive --- coatings --- biodegradable --- Aloe vera --- nanotechnology --- wax coating --- natural antimicrobials --- essential oils --- nanocoatings --- post-harvest --- bioactive compounds --- quality --- preservation methods --- nanomaterials --- Capsicum annuum L. --- hot water treatment --- ascorbate-glutathione cycle --- Musa AAA --- ALDH --- aroma volatile --- ester --- enzyme characteristics --- Prunus avium --- edible coatings --- Opuntia ficus-indica extracts --- storage --- anthocyanins --- phenolic compounds --- total antioxidant capacity
Choose an application
All articles in the presented collection are high-quality examples of both basic and applied research. The publications collectively refer to apples, bananas, cherries, kiwi fruit, mango, grapes, green bean pods, pomegranates, sweet pepper, sweet potato tubers and tomato and are aimed at improving the postharvest quality and storage extension of fresh produce. The experimental works include the following postharvest treatments: 1-methylcycloprpene, methyl jasmonate, immersion in edible coatings (aloe, chitosan, plant extracts, nanoemulsions, ethanol, ascorbic acid and essential oils solutions), heat treatments, packaging, innovative packaging materials, low temperature, low O2 and high CO2 modified atmosphere, and non-destructible technique development to measure soluble solids with infra- and near infra-red spectroscopy. Preharvest treatments were also included, such as chitosan application, fruit kept on the vine, and cultivation under far-red light. Quality assessment was dependent on species, treatment and storage conditions in each case and included evaluation of color, bruising, water loss, organoleptic estimation and texture changes in addition to changes in the concentrations of sugars, organic acids, amino acids, fatty acids, carotenoids, tocopherols, phytosterols, phenolic compounds and aroma volatiles. Gene transcription related to ethylene biosynthesis, modification of cell wall components, synthesis of aroma compounds and lipid metabolism were also the focus of some of the articles.
apple flesh --- absorption --- scattering --- soluble sugars --- 905–1650 nm --- cell wall modification --- chitosan --- ethylene biosynthesis --- fruit quality --- lignin metabolism --- postharvest quality --- preharvest treatment --- amidated graphene oxide --- sulfonated poly ether ether ketone --- modified atmosphere film --- cherry tomatoes --- food packaging --- post-harvest treatment --- jasmonate --- metabolite profiling --- lipid metabolism --- Solanum lycopersicum --- ethylene inhibition --- modified atmosphere --- carbon dioxide --- phenols --- antioxidant --- ethanol --- acetaldehyde --- Phaseolus vulgaris --- peppermint --- tea tree --- storability --- minimal processed --- ready to eat --- internal packaging --- modified atmosphere packaging --- storage quality --- transpiration --- water loss --- chilling injury --- controlled atmosphere --- far-red --- aroma --- blanching --- chilling --- synthetic pathway --- volatile --- maturity --- tomato --- flavor --- postharvest --- bruise susceptibility --- apples --- mechanical shock --- transportation --- molded fiber --- expanded polystyrene --- sweet potato --- postharvest treatment --- edible quality --- transcriptome --- mango --- bioactive --- coatings --- biodegradable --- Aloe vera --- nanotechnology --- wax coating --- natural antimicrobials --- essential oils --- nanocoatings --- post-harvest --- bioactive compounds --- quality --- preservation methods --- nanomaterials --- Capsicum annuum L. --- hot water treatment --- ascorbate-glutathione cycle --- Musa AAA --- ALDH --- aroma volatile --- ester --- enzyme characteristics --- Prunus avium --- edible coatings --- Opuntia ficus-indica extracts --- storage --- anthocyanins --- phenolic compounds --- total antioxidant capacity
Listing 1 - 5 of 5 |
Sort by
|