Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on the Energy Internet, blockchain technology and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above.
constant power load --- microgrid --- dynamic stability --- optimization --- PLL --- power-sharing control --- solid oxide fuel cell --- parameter identification --- backstepping control --- event-triggered control --- Lyapunov stability theorem --- networked control system --- nonlinear system --- autonomous driving vehicles --- vehicular communication --- intelligent driver model --- data-driven control model --- 3PL logistics --- decision making --- ARAS --- entropy --- CRITIC --- maximum power point tracking --- photovoltaic system --- partial shading conditions --- surface-based polynomial fitting --- Differential Evolution --- metaheuristic algorithms --- DC–DC converter --- islanding detection --- local islanding --- remote islanding --- signal processing --- hybrid microgrids --- renewable energies --- energy management --- electricity system --- vibration control --- dynamic vibration absorbers --- aerial vehicles --- quadrotor --- motion tracking control --- autonomous power system --- generating power consumer --- hydroelectric power plant --- optimal power consumption --- wind power plant --- solar photovoltaic power plant --- energy storage --- microgrids --- university campus --- battery energy storage --- renewable energy --- simulation --- optimal behavioral modeling --- automotive --- low-dropout linear voltage regulator --- power supply rejection ratio
Choose an application
The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on the Energy Internet, blockchain technology and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above.
Research & information: general --- Physics --- constant power load --- microgrid --- dynamic stability --- optimization --- PLL --- power-sharing control --- solid oxide fuel cell --- parameter identification --- backstepping control --- event-triggered control --- Lyapunov stability theorem --- networked control system --- nonlinear system --- autonomous driving vehicles --- vehicular communication --- intelligent driver model --- data-driven control model --- 3PL logistics --- decision making --- ARAS --- entropy --- CRITIC --- maximum power point tracking --- photovoltaic system --- partial shading conditions --- surface-based polynomial fitting --- Differential Evolution --- metaheuristic algorithms --- DC–DC converter --- islanding detection --- local islanding --- remote islanding --- signal processing --- hybrid microgrids --- renewable energies --- energy management --- electricity system --- vibration control --- dynamic vibration absorbers --- aerial vehicles --- quadrotor --- motion tracking control --- autonomous power system --- generating power consumer --- hydroelectric power plant --- optimal power consumption --- wind power plant --- solar photovoltaic power plant --- energy storage --- microgrids --- university campus --- battery energy storage --- renewable energy --- simulation --- optimal behavioral modeling --- automotive --- low-dropout linear voltage regulator --- power supply rejection ratio --- constant power load --- microgrid --- dynamic stability --- optimization --- PLL --- power-sharing control --- solid oxide fuel cell --- parameter identification --- backstepping control --- event-triggered control --- Lyapunov stability theorem --- networked control system --- nonlinear system --- autonomous driving vehicles --- vehicular communication --- intelligent driver model --- data-driven control model --- 3PL logistics --- decision making --- ARAS --- entropy --- CRITIC --- maximum power point tracking --- photovoltaic system --- partial shading conditions --- surface-based polynomial fitting --- Differential Evolution --- metaheuristic algorithms --- DC–DC converter --- islanding detection --- local islanding --- remote islanding --- signal processing --- hybrid microgrids --- renewable energies --- energy management --- electricity system --- vibration control --- dynamic vibration absorbers --- aerial vehicles --- quadrotor --- motion tracking control --- autonomous power system --- generating power consumer --- hydroelectric power plant --- optimal power consumption --- wind power plant --- solar photovoltaic power plant --- energy storage --- microgrids --- university campus --- battery energy storage --- renewable energy --- simulation --- optimal behavioral modeling --- automotive --- low-dropout linear voltage regulator --- power supply rejection ratio
Choose an application
This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis.
Technology: general issues --- History of engineering & technology --- process monitoring --- dynamics --- variable time lag --- dynamic autoregressive latent variables model --- sintering process --- hammerstein output-error systems --- auxiliary model --- multi-innovation identification theory --- fractional-order calculus theory --- canonical variate analysis --- disturbance detection --- power transmission system --- k-nearest neighbor analysis --- statistical local analysis --- intelligent fault diagnosis --- stacked pruning sparse denoising autoencoder --- convolutional neural network --- anti-noise --- flywheel fault diagnosis --- belief rule base --- fuzzy fault tree analysis --- Bayesian network --- evidential reasoning --- aluminum reduction process --- alumina concentration --- subspace identification --- distributed predictive control --- spatiotemporal feature fusion --- gated recurrent unit --- attention mechanism --- fault diagnosis --- evidential reasoning rule --- system modelling --- information transformation --- parameter optimization --- event-triggered control --- interval type-2 Takagi–Sugeno fuzzy model --- nonlinear networked systems --- filter --- gearbox fault diagnosis --- convolution fusion --- state identification --- PSO --- wavelet mutation --- LSSVM --- data-driven --- operational optimization --- case-based reasoning --- local outlier factor --- abnormal case removal --- bearing fault detection --- deep residual network --- data augmentation --- canonical correlation analysis --- just-in-time learning --- fault detection --- high-speed trains --- autonomous underwater vehicle --- thruster fault diagnostics --- fault tolerant control --- robust optimization --- ocean currents --- n/a --- interval type-2 Takagi-Sugeno fuzzy model
Listing 1 - 3 of 3 |
Sort by
|