Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULiège (3)

VIVES (3)

Vlaams Parlement (3)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (3)

2021 (2)

2019 (1)

Listing 1 - 6 of 6
Sort by

Book
Surface Engineering of Light Alloys
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Light alloys (aluminum, magnesium, and titanium alloys) are gaining increasing interest in the scientific and technological community in many different application fields, from automotive to medicine, thanks to their light weight coupled with interesting mechanical properties. The functional performances of light alloys can be significantly affected by their surface properties; in fact, the surface can be considered as the “visiting card” of the material for its working environment (e.g., it can drive the biological response upon implantation for titanium alloys intended for biomedical implants or it can affect the joining ability of aluminum and magnesium alloys) as well as for its further material working steps (e.g., coatings). Surface engineering is a versatile tool for the modification of material surfaces in order to tailor and improve their functional properties. The aim of the present Special Issue is to present the latest development in this field through research and review papers. In particular, the topics of interest include, but are not limited to, surface engineering of light alloys for biomedical applications, surface engineering of light alloys for joining and coatings applications, surface engineering of light alloys for corrosion protection, and surface engineering of light alloys for antibacterial/antifouling purposes.


Book
Surface Engineering of Light Alloys
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Light alloys (aluminum, magnesium, and titanium alloys) are gaining increasing interest in the scientific and technological community in many different application fields, from automotive to medicine, thanks to their light weight coupled with interesting mechanical properties. The functional performances of light alloys can be significantly affected by their surface properties; in fact, the surface can be considered as the “visiting card” of the material for its working environment (e.g., it can drive the biological response upon implantation for titanium alloys intended for biomedical implants or it can affect the joining ability of aluminum and magnesium alloys) as well as for its further material working steps (e.g., coatings). Surface engineering is a versatile tool for the modification of material surfaces in order to tailor and improve their functional properties. The aim of the present Special Issue is to present the latest development in this field through research and review papers. In particular, the topics of interest include, but are not limited to, surface engineering of light alloys for biomedical applications, surface engineering of light alloys for joining and coatings applications, surface engineering of light alloys for corrosion protection, and surface engineering of light alloys for antibacterial/antifouling purposes.

Keywords

Research & information: general --- Mg alloy --- corrosion protection --- hydrothermal synthesis --- coating --- degradable implant --- titanium --- gallic acid --- polyphenols --- surface functionalization --- metal implants --- aluminum alloys --- brazing --- surface preparation --- interface reactions --- joining --- microstructure --- phase/composition in reaction layer --- Ni-P coatings --- Ni3P phase --- Mg alloys --- AZ91 --- heat treatment --- microhardness --- crystallite size --- ion irradiation --- dislocation --- irradiation defect --- microcrystal --- antibacterial activity --- bone growth --- apatite formation --- silver --- strontium --- calcium titanate --- ion release --- cytotoxicity --- controlled release --- biodegradable magnesium --- dopamine --- Impedance behavior --- molecular dynamic simulation --- aluminum oxide layers --- nanostructure --- tribological wear --- surface morphology --- thermo-chemical treatment --- artificial saliva --- lubricant --- zirconia --- titanium alloys --- wear --- Mg alloy --- corrosion protection --- hydrothermal synthesis --- coating --- degradable implant --- titanium --- gallic acid --- polyphenols --- surface functionalization --- metal implants --- aluminum alloys --- brazing --- surface preparation --- interface reactions --- joining --- microstructure --- phase/composition in reaction layer --- Ni-P coatings --- Ni3P phase --- Mg alloys --- AZ91 --- heat treatment --- microhardness --- crystallite size --- ion irradiation --- dislocation --- irradiation defect --- microcrystal --- antibacterial activity --- bone growth --- apatite formation --- silver --- strontium --- calcium titanate --- ion release --- cytotoxicity --- controlled release --- biodegradable magnesium --- dopamine --- Impedance behavior --- molecular dynamic simulation --- aluminum oxide layers --- nanostructure --- tribological wear --- surface morphology --- thermo-chemical treatment --- artificial saliva --- lubricant --- zirconia --- titanium alloys --- wear


Book
Wide Bandgap Based Devices: Design, Fabrication and Applications, Volume II
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Wide bandgap (WBG) semiconductors are becoming a key enabling technology for several strategic fields, including power electronics, illumination, and sensors. This reprint collects the 23 papers covering the full spectrum of the above applications and providing contributions from the on-going research at different levels, from materials to devices and from circuits to systems.

Keywords

Technology: general issues --- History of engineering & technology --- Energy industries & utilities --- energy storage system --- power conditioning system --- silicon carbide --- vanadium redox flow batteries --- AlGaN/GaN --- SiC --- high electron mobility transistor --- Schottky barrier diode --- breakdown field --- noise --- charge traps --- radio frequency --- wide-bandgap (WBG) --- gallium nitride (GaN) --- silicon carbide (SiC) --- high electron mobility transistor (HEMT) --- metal-oxide-semiconductor field effect transistor (MOSFET) --- driving technology --- nickel oxide --- annealing temperature --- crystallite size --- optical band gap --- electrochromic device --- indium oxide thin film --- solution method --- plasma surface treatment --- bias stability --- aluminum nitride --- Schottky barrier diodes --- radio frequency sputtering --- X-ray diffraction --- X-ray photoelectron spectroscopy --- piezoelectric micromachined ultrasonic transducers --- ranging --- time of flight (TOF) --- time to digital converter circuit (TDC) --- AlGaN/GaN heterojunction --- p-GaN gate --- unidirectional operation --- rectifying electrode --- first-principles --- density functional theory --- pure β-Ga2O3 --- Sr-doped β-Ga2O3 --- p-type doping --- band structure --- density of states --- optical absorption --- AlN buffer layer --- NH3 growth interruption --- strain relaxation --- GaN-based LED --- low defect density --- gate bias modulation --- palladium catalyst --- gallium nitride --- nitrogen dioxide gas sensor --- laser micromachining --- sapphire --- AlGaN/GaN heterostructures --- high-electron mobility devices --- p-GaN gate HEMT --- normally off --- low-resistance SiC substrate --- temperature --- high electron-mobility transistor (HEMT) --- equivalent-circuit modeling --- microwave frequency --- scattering-parameter measurements --- GaN --- MIS-HEMTs --- fabrication --- threshold voltage stability --- supercritical technology --- GaN power HEMTs --- breakdown voltage --- current collapse --- compensation ratio --- auto-compensation --- carbon doping --- HVPE --- AlN --- high-temperature --- buffer layer --- nitridation --- high-electron mobility transistor --- heterogeneous integration --- SOI --- QST --- crystal growth --- cubic and hexagonal structure --- blue and yellow luminescence --- electron lifetime --- wafer dicing --- stealth dicing --- laser thermal separation --- dry processing --- laser processing --- wide bandgap semiconductor --- photovoltaic module --- digital signal processor --- synchronous buck converter --- polar --- semi-polar --- non-polar --- magnetron sputtering --- HTA --- GaN-HEMT mesa structures --- 2DEG --- X-ray sensor --- X-ray imaging --- energy storage system --- power conditioning system --- silicon carbide --- vanadium redox flow batteries --- AlGaN/GaN --- SiC --- high electron mobility transistor --- Schottky barrier diode --- breakdown field --- noise --- charge traps --- radio frequency --- wide-bandgap (WBG) --- gallium nitride (GaN) --- silicon carbide (SiC) --- high electron mobility transistor (HEMT) --- metal-oxide-semiconductor field effect transistor (MOSFET) --- driving technology --- nickel oxide --- annealing temperature --- crystallite size --- optical band gap --- electrochromic device --- indium oxide thin film --- solution method --- plasma surface treatment --- bias stability --- aluminum nitride --- Schottky barrier diodes --- radio frequency sputtering --- X-ray diffraction --- X-ray photoelectron spectroscopy --- piezoelectric micromachined ultrasonic transducers --- ranging --- time of flight (TOF) --- time to digital converter circuit (TDC) --- AlGaN/GaN heterojunction --- p-GaN gate --- unidirectional operation --- rectifying electrode --- first-principles --- density functional theory --- pure β-Ga2O3 --- Sr-doped β-Ga2O3 --- p-type doping --- band structure --- density of states --- optical absorption --- AlN buffer layer --- NH3 growth interruption --- strain relaxation --- GaN-based LED --- low defect density --- gate bias modulation --- palladium catalyst --- gallium nitride --- nitrogen dioxide gas sensor --- laser micromachining --- sapphire --- AlGaN/GaN heterostructures --- high-electron mobility devices --- p-GaN gate HEMT --- normally off --- low-resistance SiC substrate --- temperature --- high electron-mobility transistor (HEMT) --- equivalent-circuit modeling --- microwave frequency --- scattering-parameter measurements --- GaN --- MIS-HEMTs --- fabrication --- threshold voltage stability --- supercritical technology --- GaN power HEMTs --- breakdown voltage --- current collapse --- compensation ratio --- auto-compensation --- carbon doping --- HVPE --- AlN --- high-temperature --- buffer layer --- nitridation --- high-electron mobility transistor --- heterogeneous integration --- SOI --- QST --- crystal growth --- cubic and hexagonal structure --- blue and yellow luminescence --- electron lifetime --- wafer dicing --- stealth dicing --- laser thermal separation --- dry processing --- laser processing --- wide bandgap semiconductor --- photovoltaic module --- digital signal processor --- synchronous buck converter --- polar --- semi-polar --- non-polar --- magnetron sputtering --- HTA --- GaN-HEMT mesa structures --- 2DEG --- X-ray sensor --- X-ray imaging


Book
Ironmaking and Steelmaking
Authors: ---
ISBN: 303921330X 3039213296 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Steel is a critical material in our societies and will remain an important one for a long time into the future. In the last two decades, the world steel industry has gone through drastic changes and this is predicted to continue in the future. The Asian countries (e.g. China, India) have been dominant in the production of steel creating global over-capacity, while the steel industry in the developed countries have made tremendous efforts to reinforce its global leadership in process technology and product development, and remain sustainable and competitive. The global steel industry is also facing various grand challenges in strict environmental regulation, new energy and materials sources, and ever-increasing customer requirements for high quality steel products, which has been addressed accordingly by the global iron and steel community. This Special Issue, “Ironmaking and Steelmaking”, released by the journal Metals, published 33 high quality articles from the international iron and steel community, covering the state-of-the-art of the ironmaking and steelmaking processes. This includes fundamental understanding, experimental investigation, pilot plant trials, industrial applications and big data utilization in the improvement and optimization of existing processes, and research and development in transformative technologies. It is hoped that the creation of this special issue as a scientific platform will help drive the iron and steel community to build a sustainable steel industry.

Keywords

artificial neural network --- n/a --- corrosion --- inclusion control --- steel-making --- simulation --- liquid steel --- phosphate capacity --- slag --- hydrogen --- TG analysis --- surface roughness --- iron sulfate --- shot peening --- refining kinetics --- iso-conversional method --- oxygen blast furnace --- Barkhausen noise --- gas flow rate --- ductile cast iron --- toughness --- self-reduction briquette --- Mg deoxidation --- phosphorus distribution ratio --- iron oxides --- phase analysis --- desiliconisation --- solid flow --- CaO/Al2O3 ratio --- surface depression --- carbothermal reduction --- rotary hearth furnace --- torrefied biomass --- hot metal pre-treatment --- inclusions --- microwaves --- ironmaking --- reactivity --- CaO–based slags --- high-aluminum iron ore --- oxides --- HPSR --- internal crack --- fluorapatite --- crystallization rate --- COREX --- liquid area --- Al addition --- Wilcox–Swailes coefficient --- plasma arc --- evaluation of coupling relationship --- penetration theory --- silicate crystals --- ionization degree --- pellet size --- prediction model --- continuous casting --- direct element method --- modified NPL model --- slag film --- volatile matter --- crystallite size --- Al-TRIP steel --- viscosity --- anosovite crystals --- slag formation --- CO2 emissions --- integrated steel plant --- flow pattern --- high-heat-input welding --- dephosphorisation --- copper stave --- direct reduction --- shrinkage --- Cr recovery --- chemical composition --- high speed steel --- material flow --- 33MnCrTiB --- gas-based reduction --- converter --- bio-coal --- flat steel --- sulfur distribution ratio --- cold experiment --- secondary refining process --- re-oxidation --- vaporization dephosphorization --- sulfide capacity --- electroslag cladding --- hydrogen attack --- oxygen steelmaking --- non-metallic inclusions --- cracks --- non-contact measurement --- energy consumption --- high-manganese iron ore --- non-metallic inclusion --- Ca deoxidation --- Ca-treatment --- compressive strength (CS) --- oil-pipeline steel --- thermal treatment --- carbon monoxide --- composite roll --- crystallization behaviors --- devolatilization --- carbon-saturated iron --- steelmaking factory --- slag crust --- combustion --- high heat input welding --- ore-carbon briquette --- activation energy --- flow velocity --- kinetics --- hydrogen plasma --- casting speed --- solid and gaseous oxygen --- hercynite --- low fluorine --- iron ore pellets --- fayalite --- heat-affected zone --- CO–CO2 atmosphere --- and nitrogen --- smelting reduction --- high-phosphorus iron ore --- iron oxide --- mold flux --- BaO --- intragranular acicular ferrite --- carbon composite pellet --- electrolytic extraction --- iron ore --- carbon dioxide --- agglomerate --- vanadium titano-magnetite --- emission spectrum --- static process model --- concentrate --- structure --- titanium slag --- bonding interface --- fork --- blast furnace --- reaction mechanism --- reduction --- synergistic reduction --- injection --- principal component analysis --- ultrafine particles exposure --- CaO-based slags --- Wilcox-Swailes coefficient --- CO-CO2 atmosphere


Book
Wide Bandgap Based Devices: Design, Fabrication and Applications, Volume II
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Wide bandgap (WBG) semiconductors are becoming a key enabling technology for several strategic fields, including power electronics, illumination, and sensors. This reprint collects the 23 papers covering the full spectrum of the above applications and providing contributions from the on-going research at different levels, from materials to devices and from circuits to systems.

Keywords

Technology: general issues --- History of engineering & technology --- Energy industries & utilities --- energy storage system --- power conditioning system --- silicon carbide --- vanadium redox flow batteries --- AlGaN/GaN --- SiC --- high electron mobility transistor --- Schottky barrier diode --- breakdown field --- noise --- charge traps --- radio frequency --- wide-bandgap (WBG) --- gallium nitride (GaN) --- silicon carbide (SiC) --- high electron mobility transistor (HEMT) --- metal-oxide-semiconductor field effect transistor (MOSFET) --- driving technology --- nickel oxide --- annealing temperature --- crystallite size --- optical band gap --- electrochromic device --- indium oxide thin film --- solution method --- plasma surface treatment --- bias stability --- aluminum nitride --- Schottky barrier diodes --- radio frequency sputtering --- X-ray diffraction --- X-ray photoelectron spectroscopy --- piezoelectric micromachined ultrasonic transducers --- ranging --- time of flight (TOF) --- time to digital converter circuit (TDC) --- AlGaN/GaN heterojunction --- p-GaN gate --- unidirectional operation --- rectifying electrode --- first-principles --- density functional theory --- pure β-Ga2O3 --- Sr-doped β-Ga2O3 --- p-type doping --- band structure --- density of states --- optical absorption --- AlN buffer layer --- NH3 growth interruption --- strain relaxation --- GaN-based LED --- low defect density --- gate bias modulation --- palladium catalyst --- gallium nitride --- nitrogen dioxide gas sensor --- laser micromachining --- sapphire --- AlGaN/GaN heterostructures --- high-electron mobility devices --- p-GaN gate HEMT --- normally off --- low-resistance SiC substrate --- temperature --- high electron-mobility transistor (HEMT) --- equivalent-circuit modeling --- microwave frequency --- scattering-parameter measurements --- GaN --- MIS-HEMTs --- fabrication --- threshold voltage stability --- supercritical technology --- GaN power HEMTs --- breakdown voltage --- current collapse --- compensation ratio --- auto-compensation --- carbon doping --- HVPE --- AlN --- high-temperature --- buffer layer --- nitridation --- high-electron mobility transistor --- heterogeneous integration --- SOI --- QST --- crystal growth --- cubic and hexagonal structure --- blue and yellow luminescence --- electron lifetime --- wafer dicing --- stealth dicing --- laser thermal separation --- dry processing --- laser processing --- wide bandgap semiconductor --- photovoltaic module --- digital signal processor --- synchronous buck converter --- polar --- semi-polar --- non-polar --- magnetron sputtering --- HTA --- GaN-HEMT mesa structures --- 2DEG --- X-ray sensor --- X-ray imaging --- n/a


Book
Wide Bandgap Based Devices: Design, Fabrication and Applications, Volume II
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Wide bandgap (WBG) semiconductors are becoming a key enabling technology for several strategic fields, including power electronics, illumination, and sensors. This reprint collects the 23 papers covering the full spectrum of the above applications and providing contributions from the on-going research at different levels, from materials to devices and from circuits to systems.

Keywords

energy storage system --- power conditioning system --- silicon carbide --- vanadium redox flow batteries --- AlGaN/GaN --- SiC --- high electron mobility transistor --- Schottky barrier diode --- breakdown field --- noise --- charge traps --- radio frequency --- wide-bandgap (WBG) --- gallium nitride (GaN) --- silicon carbide (SiC) --- high electron mobility transistor (HEMT) --- metal-oxide-semiconductor field effect transistor (MOSFET) --- driving technology --- nickel oxide --- annealing temperature --- crystallite size --- optical band gap --- electrochromic device --- indium oxide thin film --- solution method --- plasma surface treatment --- bias stability --- aluminum nitride --- Schottky barrier diodes --- radio frequency sputtering --- X-ray diffraction --- X-ray photoelectron spectroscopy --- piezoelectric micromachined ultrasonic transducers --- ranging --- time of flight (TOF) --- time to digital converter circuit (TDC) --- AlGaN/GaN heterojunction --- p-GaN gate --- unidirectional operation --- rectifying electrode --- first-principles --- density functional theory --- pure β-Ga2O3 --- Sr-doped β-Ga2O3 --- p-type doping --- band structure --- density of states --- optical absorption --- AlN buffer layer --- NH3 growth interruption --- strain relaxation --- GaN-based LED --- low defect density --- gate bias modulation --- palladium catalyst --- gallium nitride --- nitrogen dioxide gas sensor --- laser micromachining --- sapphire --- AlGaN/GaN heterostructures --- high-electron mobility devices --- p-GaN gate HEMT --- normally off --- low-resistance SiC substrate --- temperature --- high electron-mobility transistor (HEMT) --- equivalent-circuit modeling --- microwave frequency --- scattering-parameter measurements --- GaN --- MIS-HEMTs --- fabrication --- threshold voltage stability --- supercritical technology --- GaN power HEMTs --- breakdown voltage --- current collapse --- compensation ratio --- auto-compensation --- carbon doping --- HVPE --- AlN --- high-temperature --- buffer layer --- nitridation --- high-electron mobility transistor --- heterogeneous integration --- SOI --- QST --- crystal growth --- cubic and hexagonal structure --- blue and yellow luminescence --- electron lifetime --- wafer dicing --- stealth dicing --- laser thermal separation --- dry processing --- laser processing --- wide bandgap semiconductor --- photovoltaic module --- digital signal processor --- synchronous buck converter --- polar --- semi-polar --- non-polar --- magnetron sputtering --- HTA --- GaN-HEMT mesa structures --- 2DEG --- X-ray sensor --- X-ray imaging --- n/a

Listing 1 - 6 of 6
Sort by