Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Expansion of water resources is a key factor in the socio-economic development of all countries. Dams play a critical role in water storage, especially for areas with unequal rainfall and limited water availability. While the safety of existing dams, periodic re-evaluations and life extensions are the primary objectives in developed countries, the design and construction of new dams are the main concerns in developing countries. The role of dam engineers has greatly changed over recent decades. Thanks to new technologies, the surveillance, monitoring, design and analysis tasks involved in this process have significantly improved. The current edited book is a collection of dam-related papers. The overall aim of this edited book is to improve modeling, simulation and field measurements for different dam types (i.e. concrete gravity dams, concrete arch dams, and embankments). The articles cover a wide range of topics on the subject of dams, and reflect the scientific efforts and engineering approaches in this challenging and exciting research field.
History of engineering & technology --- arch dams --- probabilistic --- nonlinear --- seismic --- response correlation --- stochastic --- excavation --- movement --- field --- groundwater --- soil nail --- spatial --- variability --- alkali-silica reaction --- damage --- existing concrete dam --- finite element analysis --- temperature --- saturation degree --- dams --- endurance time analysis --- dynamic capacity --- failure --- seismic effects --- dam safety --- concrete dams --- structural safety and reliability --- finite elements --- earthfill dam --- central clay core --- downstream shoulder --- settlements --- long-term behaviour --- reservoir level fluctuations --- rainfall --- seepage --- geodetic monitoring --- concrete arch dams --- seasonal temperature variations --- crack prediction --- non-linear finite element analyses --- concrete gravity dams --- seismic fragility analysis --- uncertainty quantification --- performance based earthquake engineering --- stability assessment --- instrumentation --- earth dam --- health monitoring --- passive rock bolt --- concrete dam --- progressive failure --- n/a
Choose an application
Expansion of water resources is a key factor in the socio-economic development of all countries. Dams play a critical role in water storage, especially for areas with unequal rainfall and limited water availability. While the safety of existing dams, periodic re-evaluations and life extensions are the primary objectives in developed countries, the design and construction of new dams are the main concerns in developing countries. The role of dam engineers has greatly changed over recent decades. Thanks to new technologies, the surveillance, monitoring, design and analysis tasks involved in this process have significantly improved. The current edited book is a collection of dam-related papers. The overall aim of this edited book is to improve modeling, simulation and field measurements for different dam types (i.e. concrete gravity dams, concrete arch dams, and embankments). The articles cover a wide range of topics on the subject of dams, and reflect the scientific efforts and engineering approaches in this challenging and exciting research field.
arch dams --- probabilistic --- nonlinear --- seismic --- response correlation --- stochastic --- excavation --- movement --- field --- groundwater --- soil nail --- spatial --- variability --- alkali-silica reaction --- damage --- existing concrete dam --- finite element analysis --- temperature --- saturation degree --- dams --- endurance time analysis --- dynamic capacity --- failure --- seismic effects --- dam safety --- concrete dams --- structural safety and reliability --- finite elements --- earthfill dam --- central clay core --- downstream shoulder --- settlements --- long-term behaviour --- reservoir level fluctuations --- rainfall --- seepage --- geodetic monitoring --- concrete arch dams --- seasonal temperature variations --- crack prediction --- non-linear finite element analyses --- concrete gravity dams --- seismic fragility analysis --- uncertainty quantification --- performance based earthquake engineering --- stability assessment --- instrumentation --- earth dam --- health monitoring --- passive rock bolt --- concrete dam --- progressive failure --- n/a
Choose an application
Expansion of water resources is a key factor in the socio-economic development of all countries. Dams play a critical role in water storage, especially for areas with unequal rainfall and limited water availability. While the safety of existing dams, periodic re-evaluations and life extensions are the primary objectives in developed countries, the design and construction of new dams are the main concerns in developing countries. The role of dam engineers has greatly changed over recent decades. Thanks to new technologies, the surveillance, monitoring, design and analysis tasks involved in this process have significantly improved. The current edited book is a collection of dam-related papers. The overall aim of this edited book is to improve modeling, simulation and field measurements for different dam types (i.e. concrete gravity dams, concrete arch dams, and embankments). The articles cover a wide range of topics on the subject of dams, and reflect the scientific efforts and engineering approaches in this challenging and exciting research field.
History of engineering & technology --- arch dams --- probabilistic --- nonlinear --- seismic --- response correlation --- stochastic --- excavation --- movement --- field --- groundwater --- soil nail --- spatial --- variability --- alkali-silica reaction --- damage --- existing concrete dam --- finite element analysis --- temperature --- saturation degree --- dams --- endurance time analysis --- dynamic capacity --- failure --- seismic effects --- dam safety --- concrete dams --- structural safety and reliability --- finite elements --- earthfill dam --- central clay core --- downstream shoulder --- settlements --- long-term behaviour --- reservoir level fluctuations --- rainfall --- seepage --- geodetic monitoring --- concrete arch dams --- seasonal temperature variations --- crack prediction --- non-linear finite element analyses --- concrete gravity dams --- seismic fragility analysis --- uncertainty quantification --- performance based earthquake engineering --- stability assessment --- instrumentation --- earth dam --- health monitoring --- passive rock bolt --- concrete dam --- progressive failure --- arch dams --- probabilistic --- nonlinear --- seismic --- response correlation --- stochastic --- excavation --- movement --- field --- groundwater --- soil nail --- spatial --- variability --- alkali-silica reaction --- damage --- existing concrete dam --- finite element analysis --- temperature --- saturation degree --- dams --- endurance time analysis --- dynamic capacity --- failure --- seismic effects --- dam safety --- concrete dams --- structural safety and reliability --- finite elements --- earthfill dam --- central clay core --- downstream shoulder --- settlements --- long-term behaviour --- reservoir level fluctuations --- rainfall --- seepage --- geodetic monitoring --- concrete arch dams --- seasonal temperature variations --- crack prediction --- non-linear finite element analyses --- concrete gravity dams --- seismic fragility analysis --- uncertainty quantification --- performance based earthquake engineering --- stability assessment --- instrumentation --- earth dam --- health monitoring --- passive rock bolt --- concrete dam --- progressive failure
Choose an application
The concept of sustainability has been intensively used over the last decades since Brundtland´s report was published in 1987. This concept, due to its transversal, horizontal and interdisciplinary nature, can be used in many disciplines, scenarios, spatio-temporal dimensions and different circumstances. The intensive development in recent years of analytical techniques and tools based on disciplines such as artificial intelligence, machine learning, data mining, information theory and the Internet of Things, among others, has meant we are very well-placed for analysing the sustainability of water systems in a multiperspective way. Water systems management requires the most advanced approaches and tools for rigorously addressing all the dimensions involved in the sustainability of its development. Consequently, addressing the sustainability of water systems management may comprise physical (natural processes), chemical, socioeconomic, legal, institutional, infrastructure (engineering), political and cultural aspects, among others. This Special Issue welcomes general and specific contributions that address the sustainability of water systems management considering its development. Special interest will be given to those contributions that consider tradeoffs and/or integration between some of the aspects or disciplines that drive the sustainability of water systems in the context of their management and development.
History of engineering & technology --- suspended solids --- unmanned aerial vehicle --- spectral imaging --- artificial neural networks --- water resource --- South Korean urban industry --- green use efficiency of industrial water (GUEIW) --- global non-radial directional distance function model (GNDDF) --- economic efficiency of industrial water use (ECEIW) --- environmental efficiency of industrial water use (ENEIW) --- water quality --- climate change --- Bayesian networks --- uncertainty --- multi-models --- prioritization --- geomorphometric parameters --- compound parameter --- geospatial distribution --- GIS --- GHGs --- aquatic factors --- random forest --- water temperature --- nitrogen --- sulfate --- concrete arch-dams --- stability scenarios --- deformation scenarios --- safety management --- sustainability assessment --- runoff --- temporal dependence --- rivers’ sustainability --- predictive methods --- causal reasoning --- runoff fractions --- water management --- contamination --- integrated water resources management --- groundwater --- pollution --- Sub-Saharan Africa --- transition management --- water safety plan --- aquifer management --- water governance --- irrigation --- unauthorized use --- barbate river basin --- biocalcarenites --- remote sensing --- citizen surveys --- artificial neural network (ANN) --- chemical oxygen demand (COD) --- wastewater treatment plant (WWTP)
Choose an application
The concept of sustainability has been intensively used over the last decades since Brundtland´s report was published in 1987. This concept, due to its transversal, horizontal and interdisciplinary nature, can be used in many disciplines, scenarios, spatio-temporal dimensions and different circumstances. The intensive development in recent years of analytical techniques and tools based on disciplines such as artificial intelligence, machine learning, data mining, information theory and the Internet of Things, among others, has meant we are very well-placed for analysing the sustainability of water systems in a multiperspective way. Water systems management requires the most advanced approaches and tools for rigorously addressing all the dimensions involved in the sustainability of its development. Consequently, addressing the sustainability of water systems management may comprise physical (natural processes), chemical, socioeconomic, legal, institutional, infrastructure (engineering), political and cultural aspects, among others. This Special Issue welcomes general and specific contributions that address the sustainability of water systems management considering its development. Special interest will be given to those contributions that consider tradeoffs and/or integration between some of the aspects or disciplines that drive the sustainability of water systems in the context of their management and development.
suspended solids --- unmanned aerial vehicle --- spectral imaging --- artificial neural networks --- water resource --- South Korean urban industry --- green use efficiency of industrial water (GUEIW) --- global non-radial directional distance function model (GNDDF) --- economic efficiency of industrial water use (ECEIW) --- environmental efficiency of industrial water use (ENEIW) --- water quality --- climate change --- Bayesian networks --- uncertainty --- multi-models --- prioritization --- geomorphometric parameters --- compound parameter --- geospatial distribution --- GIS --- GHGs --- aquatic factors --- random forest --- water temperature --- nitrogen --- sulfate --- concrete arch-dams --- stability scenarios --- deformation scenarios --- safety management --- sustainability assessment --- runoff --- temporal dependence --- rivers’ sustainability --- predictive methods --- causal reasoning --- runoff fractions --- water management --- contamination --- integrated water resources management --- groundwater --- pollution --- Sub-Saharan Africa --- transition management --- water safety plan --- aquifer management --- water governance --- irrigation --- unauthorized use --- barbate river basin --- biocalcarenites --- remote sensing --- citizen surveys --- artificial neural network (ANN) --- chemical oxygen demand (COD) --- wastewater treatment plant (WWTP)
Choose an application
The concept of sustainability has been intensively used over the last decades since Brundtland´s report was published in 1987. This concept, due to its transversal, horizontal and interdisciplinary nature, can be used in many disciplines, scenarios, spatio-temporal dimensions and different circumstances. The intensive development in recent years of analytical techniques and tools based on disciplines such as artificial intelligence, machine learning, data mining, information theory and the Internet of Things, among others, has meant we are very well-placed for analysing the sustainability of water systems in a multiperspective way. Water systems management requires the most advanced approaches and tools for rigorously addressing all the dimensions involved in the sustainability of its development. Consequently, addressing the sustainability of water systems management may comprise physical (natural processes), chemical, socioeconomic, legal, institutional, infrastructure (engineering), political and cultural aspects, among others. This Special Issue welcomes general and specific contributions that address the sustainability of water systems management considering its development. Special interest will be given to those contributions that consider tradeoffs and/or integration between some of the aspects or disciplines that drive the sustainability of water systems in the context of their management and development.
History of engineering & technology --- suspended solids --- unmanned aerial vehicle --- spectral imaging --- artificial neural networks --- water resource --- South Korean urban industry --- green use efficiency of industrial water (GUEIW) --- global non-radial directional distance function model (GNDDF) --- economic efficiency of industrial water use (ECEIW) --- environmental efficiency of industrial water use (ENEIW) --- water quality --- climate change --- Bayesian networks --- uncertainty --- multi-models --- prioritization --- geomorphometric parameters --- compound parameter --- geospatial distribution --- GIS --- GHGs --- aquatic factors --- random forest --- water temperature --- nitrogen --- sulfate --- concrete arch-dams --- stability scenarios --- deformation scenarios --- safety management --- sustainability assessment --- runoff --- temporal dependence --- rivers’ sustainability --- predictive methods --- causal reasoning --- runoff fractions --- water management --- contamination --- integrated water resources management --- groundwater --- pollution --- Sub-Saharan Africa --- transition management --- water safety plan --- aquifer management --- water governance --- irrigation --- unauthorized use --- barbate river basin --- biocalcarenites --- remote sensing --- citizen surveys --- artificial neural network (ANN) --- chemical oxygen demand (COD) --- wastewater treatment plant (WWTP) --- suspended solids --- unmanned aerial vehicle --- spectral imaging --- artificial neural networks --- water resource --- South Korean urban industry --- green use efficiency of industrial water (GUEIW) --- global non-radial directional distance function model (GNDDF) --- economic efficiency of industrial water use (ECEIW) --- environmental efficiency of industrial water use (ENEIW) --- water quality --- climate change --- Bayesian networks --- uncertainty --- multi-models --- prioritization --- geomorphometric parameters --- compound parameter --- geospatial distribution --- GIS --- GHGs --- aquatic factors --- random forest --- water temperature --- nitrogen --- sulfate --- concrete arch-dams --- stability scenarios --- deformation scenarios --- safety management --- sustainability assessment --- runoff --- temporal dependence --- rivers’ sustainability --- predictive methods --- causal reasoning --- runoff fractions --- water management --- contamination --- integrated water resources management --- groundwater --- pollution --- Sub-Saharan Africa --- transition management --- water safety plan --- aquifer management --- water governance --- irrigation --- unauthorized use --- barbate river basin --- biocalcarenites --- remote sensing --- citizen surveys --- artificial neural network (ANN) --- chemical oxygen demand (COD) --- wastewater treatment plant (WWTP)
Listing 1 - 6 of 6 |
Sort by
|