Listing 1 - 9 of 9 |
Sort by
|
Choose an application
The cryosphere is very sensitive to climate change, and glaciers represent one of the most important archives of atmospheric composition and its variability. From the Himalaya to the European Alps, the longest mid-latitude mountain chain in the world, lie thousands of glaciers that have collected atmospheric compounds over the last millennia. China and Italy are located at the opposite terminals of this long mountain chain, comprising strategic positions for understanding climate evolution and providing important information for the modeling of future climates. The results presented are highlights of some of the most recent advances in cryospheric studies, especially on the topic of mineral dust and aerosols in the atmosphere. They evidence the complexity of the chemical–physical processes involving solid compounds occurring in glacier, snow, and permafrost environments, covering different aspects such as spatial and temporal trends, as well as the impact of mineral and nonmineral particles. Results also show that recent advances in measurement techniques and source apportionment may be powerful and sophisticated tools to provide novel, high-quality scientific information.
XAS spectroscopy --- bacteria --- XANES --- mineral elements --- X-ray fluorescence spectroscopy --- iron geochemistry --- ice --- X-ray absorption fine structure spectroscopy --- mineral dust --- compositional data analysis --- synchrotron radiation --- dust --- global warming hiatus --- simultaneous measurements --- TXRF --- low concentration elemental analysis --- global warming slowdown --- paleoclimatology --- water --- X-ray fluorescence --- snow --- long-range transport --- southern hemisphere --- Antarctica --- ice core --- cryoconite --- evaporation --- contaminants --- POPs --- paleoclimate --- XANES and LCF --- ultra-dilution --- particulate matter --- trace elements --- atmospheric mineral dust --- cryospheric sciences --- ice cores --- X-ray absorption near edge spectroscopy --- droplets --- Arctic rapid warming --- microbiology --- cryosphere --- polycapillary optics --- environment --- Laohugou glacier --- iron speciation --- X-ray absorption spectroscopy --- Arctic --- insoluble dust
Choose an application
Environmental conditions and nutritional stress may greatly affect crop performance. Abiotic stresses such as temperature (cold, heat), water (drought, flooding), irradiance, salinity, nutrients, and heavy metals can strongly affect plant growth dynamics and the yield and quality of horticultural products. Such effects have become of greater importance during the course of global climate change. Different strategies and techniques can be used to detect, investigate, and mitigate the effects of environmental and nutritional stress. Horticultural crop management is moving towards digitized, precision management through wireless remote-control solutions, but data analysis, although a traditional approach, remains the basis of stress detection and crop management. This Special Issue summarizes the recent progress in agronomic management strategies to detect and reduce environmental and nutritional stress effects on the yield and quality of horticultural crops.
Research & information: general --- Capsicum annuum --- heat units --- plant population density --- hail damage --- baby corn --- non-leguminous cover crops --- chopping --- baby corn yield --- baby corn quality --- kharif season --- Thuja standishii × plicata --- container production --- nursery production --- volumetric water content --- vegetables --- water deficit --- climate change --- polyols --- minerals --- flavonoids --- carotenoids --- salinity --- evapotranspiration --- leaching fraction --- calcium --- cactus pear --- GA3 --- injection application --- spraying application --- lignification --- photosynthesis --- chlorophyll --- proline --- ion leakage --- susceptibility --- electrical conductivity --- greenhouse --- image processing --- nutrient stress --- remote sensing --- Bradyrhizobium --- temperature-dependent distribution --- nodule composition --- proliferation in soil --- infection --- French bean --- mangetout --- peas --- antioxidant --- ascorbic acid --- total phenolic content --- mineral composition --- Bradyrhizobium japonicum --- Bradyrhizobium elkanii --- temperature effects --- growth --- competitive infection --- biochemical constituents --- β-carotene --- vitamins --- micro-nutrients --- growing environments --- Brix --- TAcy --- nitrogen --- potassium --- compositional data --- cranberry yield parameters --- firmness --- local diagnosis --- redundancy analysis --- Capsicum annuum --- heat units --- plant population density --- hail damage --- baby corn --- non-leguminous cover crops --- chopping --- baby corn yield --- baby corn quality --- kharif season --- Thuja standishii × plicata --- container production --- nursery production --- volumetric water content --- vegetables --- water deficit --- climate change --- polyols --- minerals --- flavonoids --- carotenoids --- salinity --- evapotranspiration --- leaching fraction --- calcium --- cactus pear --- GA3 --- injection application --- spraying application --- lignification --- photosynthesis --- chlorophyll --- proline --- ion leakage --- susceptibility --- electrical conductivity --- greenhouse --- image processing --- nutrient stress --- remote sensing --- Bradyrhizobium --- temperature-dependent distribution --- nodule composition --- proliferation in soil --- infection --- French bean --- mangetout --- peas --- antioxidant --- ascorbic acid --- total phenolic content --- mineral composition --- Bradyrhizobium japonicum --- Bradyrhizobium elkanii --- temperature effects --- growth --- competitive infection --- biochemical constituents --- β-carotene --- vitamins --- micro-nutrients --- growing environments --- Brix --- TAcy --- nitrogen --- potassium --- compositional data --- cranberry yield parameters --- firmness --- local diagnosis --- redundancy analysis
Choose an application
Environmental conditions and nutritional stress may greatly affect crop performance. Abiotic stresses such as temperature (cold, heat), water (drought, flooding), irradiance, salinity, nutrients, and heavy metals can strongly affect plant growth dynamics and the yield and quality of horticultural products. Such effects have become of greater importance during the course of global climate change. Different strategies and techniques can be used to detect, investigate, and mitigate the effects of environmental and nutritional stress. Horticultural crop management is moving towards digitized, precision management through wireless remote-control solutions, but data analysis, although a traditional approach, remains the basis of stress detection and crop management. This Special Issue summarizes the recent progress in agronomic management strategies to detect and reduce environmental and nutritional stress effects on the yield and quality of horticultural crops.
Research & information: general --- Capsicum annuum --- heat units --- plant population density --- hail damage --- baby corn --- non-leguminous cover crops --- chopping --- baby corn yield --- baby corn quality --- kharif season --- Thuja standishii × plicata --- container production --- nursery production --- volumetric water content --- vegetables --- water deficit --- climate change --- polyols --- minerals --- flavonoids --- carotenoids --- salinity --- evapotranspiration --- leaching fraction --- calcium --- cactus pear --- GA3 --- injection application --- spraying application --- lignification --- photosynthesis --- chlorophyll --- proline --- ion leakage --- susceptibility --- electrical conductivity --- greenhouse --- image processing --- nutrient stress --- remote sensing --- Bradyrhizobium --- temperature-dependent distribution --- nodule composition --- proliferation in soil --- infection --- French bean --- mangetout --- peas --- antioxidant --- ascorbic acid --- total phenolic content --- mineral composition --- Bradyrhizobium japonicum --- Bradyrhizobium elkanii --- temperature effects --- growth --- competitive infection --- biochemical constituents --- β-carotene --- vitamins --- micro-nutrients --- growing environments --- Brix --- TAcy --- nitrogen --- potassium --- compositional data --- cranberry yield parameters --- firmness --- local diagnosis --- redundancy analysis --- n/a
Choose an application
The protection of human health and the environment (representing the main reason for waste management), as well as the sustainable use of natural resources, requires chemical, biological, physical and thermal treatment of wastes. This refers to the conditioning (e.g., drying, washing, comminution, rotting, stabilization, neutralization, agglomeration, homogenization), conversion (e.g., incineration, pyrolysis, gasification, dissolution, evaporation), and separation (classification, direct and indirect (i.e., sensor-based) sorting) of all types of wastes to follow the principles of the waste hierarchy (i.e., prevention (not addressed by this issue), preparation for re-use, recycling, other recovery, and disposal). Longstanding challenges include the increase of yield and purity of recyclable fractions and the sustainable removal or destruction of contaminants from the circular economy.This Special Issue on “Advanced Technology of Waste Treatment” of Processes collects high-quality research studies addressing challenges on the broad area of chemical, biological, physical and thermal treatment of wastes.
Technology: general issues --- History of engineering & technology --- selective Cu(II) separation --- sustainable waste treatment --- municipal solid waste --- polymer-assisted ultrafiltration --- real fly ash extracts --- urban mining --- pilot installation --- MSWI fly ash --- properties of fly ash --- acid leaching --- heavy metal recovery --- marine litter --- waste treatment --- plastic waste --- pyrolysis --- gasification --- incineration --- thermogravimetric analysis --- biotechnological upcycling --- plastics recycling --- feedstock recycling --- plastic pyrolysis --- lumped modeling --- kinetic modeling --- ReOil --- risk modelling --- portable batteries --- lithium batteries --- fire hazards --- waste management --- lithium-ion-batteries --- pyrometallurgical recycling --- carbothermal reduction --- wood ash treatment --- chromate reduction --- hot alkaline extraction --- recycling --- refractory --- regenerate --- electrodynamic fragmentation --- innovative process --- process optimization --- enhanced landfill mining --- NEW-MINE --- particle size distribution --- compositional data analysis --- simplex --- isometric log-ratios --- multivariate multiple linear regression --- mechanical processing --- commercial waste --- shredder --- chemical recycling --- wet-mechanical processing --- polyolefins --- circular economy --- WEEE --- recovery of aromatics --- oil upgrading --- dehalogenation --- hydrothermal carbonization --- sewage sludge --- phosphorus recovery --- hydrochar --- process-water --- pH --- mixed waste --- municipal waste --- recovery --- contaminants --- plastics --- digitalisation --- smart waste factory --- n/a
Choose an application
Environmental conditions and nutritional stress may greatly affect crop performance. Abiotic stresses such as temperature (cold, heat), water (drought, flooding), irradiance, salinity, nutrients, and heavy metals can strongly affect plant growth dynamics and the yield and quality of horticultural products. Such effects have become of greater importance during the course of global climate change. Different strategies and techniques can be used to detect, investigate, and mitigate the effects of environmental and nutritional stress. Horticultural crop management is moving towards digitized, precision management through wireless remote-control solutions, but data analysis, although a traditional approach, remains the basis of stress detection and crop management. This Special Issue summarizes the recent progress in agronomic management strategies to detect and reduce environmental and nutritional stress effects on the yield and quality of horticultural crops.
Capsicum annuum --- heat units --- plant population density --- hail damage --- baby corn --- non-leguminous cover crops --- chopping --- baby corn yield --- baby corn quality --- kharif season --- Thuja standishii × plicata --- container production --- nursery production --- volumetric water content --- vegetables --- water deficit --- climate change --- polyols --- minerals --- flavonoids --- carotenoids --- salinity --- evapotranspiration --- leaching fraction --- calcium --- cactus pear --- GA3 --- injection application --- spraying application --- lignification --- photosynthesis --- chlorophyll --- proline --- ion leakage --- susceptibility --- electrical conductivity --- greenhouse --- image processing --- nutrient stress --- remote sensing --- Bradyrhizobium --- temperature-dependent distribution --- nodule composition --- proliferation in soil --- infection --- French bean --- mangetout --- peas --- antioxidant --- ascorbic acid --- total phenolic content --- mineral composition --- Bradyrhizobium japonicum --- Bradyrhizobium elkanii --- temperature effects --- growth --- competitive infection --- biochemical constituents --- β-carotene --- vitamins --- micro-nutrients --- growing environments --- Brix --- TAcy --- nitrogen --- potassium --- compositional data --- cranberry yield parameters --- firmness --- local diagnosis --- redundancy analysis --- n/a
Choose an application
The protection of human health and the environment (representing the main reason for waste management), as well as the sustainable use of natural resources, requires chemical, biological, physical and thermal treatment of wastes. This refers to the conditioning (e.g., drying, washing, comminution, rotting, stabilization, neutralization, agglomeration, homogenization), conversion (e.g., incineration, pyrolysis, gasification, dissolution, evaporation), and separation (classification, direct and indirect (i.e., sensor-based) sorting) of all types of wastes to follow the principles of the waste hierarchy (i.e., prevention (not addressed by this issue), preparation for re-use, recycling, other recovery, and disposal). Longstanding challenges include the increase of yield and purity of recyclable fractions and the sustainable removal or destruction of contaminants from the circular economy.This Special Issue on “Advanced Technology of Waste Treatment” of Processes collects high-quality research studies addressing challenges on the broad area of chemical, biological, physical and thermal treatment of wastes.
selective Cu(II) separation --- sustainable waste treatment --- municipal solid waste --- polymer-assisted ultrafiltration --- real fly ash extracts --- urban mining --- pilot installation --- MSWI fly ash --- properties of fly ash --- acid leaching --- heavy metal recovery --- marine litter --- waste treatment --- plastic waste --- pyrolysis --- gasification --- incineration --- thermogravimetric analysis --- biotechnological upcycling --- plastics recycling --- feedstock recycling --- plastic pyrolysis --- lumped modeling --- kinetic modeling --- ReOil --- risk modelling --- portable batteries --- lithium batteries --- fire hazards --- waste management --- lithium-ion-batteries --- pyrometallurgical recycling --- carbothermal reduction --- wood ash treatment --- chromate reduction --- hot alkaline extraction --- recycling --- refractory --- regenerate --- electrodynamic fragmentation --- innovative process --- process optimization --- enhanced landfill mining --- NEW-MINE --- particle size distribution --- compositional data analysis --- simplex --- isometric log-ratios --- multivariate multiple linear regression --- mechanical processing --- commercial waste --- shredder --- chemical recycling --- wet-mechanical processing --- polyolefins --- circular economy --- WEEE --- recovery of aromatics --- oil upgrading --- dehalogenation --- hydrothermal carbonization --- sewage sludge --- phosphorus recovery --- hydrochar --- process-water --- pH --- mixed waste --- municipal waste --- recovery --- contaminants --- plastics --- digitalisation --- smart waste factory --- n/a
Choose an application
This book contains the Nutrients Special Issue "Nutrition and Human Oral Health" edited by Dr. Kirstin Vach and Prof. Dr. Johan Woelber. It includes 18 wonderful publications that provide an outline of current scientific work in the field of nutritional dentistry.
severe caries --- tooth decay --- dental --- early childhood --- early childhood caries --- malnutrition --- undernutrition --- stunting --- growth and development --- Punica granatum --- Vaccinium myrtillus --- Aronia melanocarpa --- punicalagin --- cyanidin 3-glucoside and hyperoside --- Streptococcus mutans --- Streptococcus sobrinus --- photosensitizer --- antimicrobial photodynamic treatment --- compositional data --- ratio fractions --- nutrition --- microbiome --- oral health --- pellicle --- linseed oil --- fatty acid --- ultrastructure --- in situ --- dental status --- older people --- elderly people --- systematic review --- dental caries --- diet therapy --- dentists --- dental auxiliaries --- nutritionists --- dietitian --- surveys and questionnaires --- qualitative research --- review --- periodontitis --- periodontal diseases --- scaling and root planning --- diet --- dietary protein --- Inula viscosa --- initial adhesion --- colony-forming units (CFU) --- live/dead staining --- fluorescence microscopy --- dietary patterns --- periodontal disease --- clinical attachment loss --- DMFT --- ketogenic diet --- periodontal inflammation --- gingivitis --- periodontal --- bone loss --- LDL --- vitamin D --- CBCT --- radiographic bone loss --- sarcopenic dysphagia --- sarcopenia --- dysphagia --- osteoporosis --- elderly --- probiotic --- clinical parameters --- prevention --- therapeutics --- questionnaires --- erosion --- young adults --- tooth wear --- dentistry --- inflammation --- Mediterranean diet --- periodontology --- caries --- stable isotope analysis --- bioarcheology --- n/a
Choose an application
This book contains the Nutrients Special Issue "Nutrition and Human Oral Health" edited by Dr. Kirstin Vach and Prof. Dr. Johan Woelber. It includes 18 wonderful publications that provide an outline of current scientific work in the field of nutritional dentistry.
Research & information: general --- Biology, life sciences --- Food & society --- severe caries --- tooth decay --- dental --- early childhood --- early childhood caries --- malnutrition --- undernutrition --- stunting --- growth and development --- Punica granatum --- Vaccinium myrtillus --- Aronia melanocarpa --- punicalagin --- cyanidin 3-glucoside and hyperoside --- Streptococcus mutans --- Streptococcus sobrinus --- photosensitizer --- antimicrobial photodynamic treatment --- compositional data --- ratio fractions --- nutrition --- microbiome --- oral health --- pellicle --- linseed oil --- fatty acid --- ultrastructure --- in situ --- dental status --- older people --- elderly people --- systematic review --- dental caries --- diet therapy --- dentists --- dental auxiliaries --- nutritionists --- dietitian --- surveys and questionnaires --- qualitative research --- review --- periodontitis --- periodontal diseases --- scaling and root planning --- diet --- dietary protein --- Inula viscosa --- initial adhesion --- colony-forming units (CFU) --- live/dead staining --- fluorescence microscopy --- dietary patterns --- periodontal disease --- clinical attachment loss --- DMFT --- ketogenic diet --- periodontal inflammation --- gingivitis --- periodontal --- bone loss --- LDL --- vitamin D --- CBCT --- radiographic bone loss --- sarcopenic dysphagia --- sarcopenia --- dysphagia --- osteoporosis --- elderly --- probiotic --- clinical parameters --- prevention --- therapeutics --- questionnaires --- erosion --- young adults --- tooth wear --- dentistry --- inflammation --- Mediterranean diet --- periodontology --- caries --- stable isotope analysis --- bioarcheology --- severe caries --- tooth decay --- dental --- early childhood --- early childhood caries --- malnutrition --- undernutrition --- stunting --- growth and development --- Punica granatum --- Vaccinium myrtillus --- Aronia melanocarpa --- punicalagin --- cyanidin 3-glucoside and hyperoside --- Streptococcus mutans --- Streptococcus sobrinus --- photosensitizer --- antimicrobial photodynamic treatment --- compositional data --- ratio fractions --- nutrition --- microbiome --- oral health --- pellicle --- linseed oil --- fatty acid --- ultrastructure --- in situ --- dental status --- older people --- elderly people --- systematic review --- dental caries --- diet therapy --- dentists --- dental auxiliaries --- nutritionists --- dietitian --- surveys and questionnaires --- qualitative research --- review --- periodontitis --- periodontal diseases --- scaling and root planning --- diet --- dietary protein --- Inula viscosa --- initial adhesion --- colony-forming units (CFU) --- live/dead staining --- fluorescence microscopy --- dietary patterns --- periodontal disease --- clinical attachment loss --- DMFT --- ketogenic diet --- periodontal inflammation --- gingivitis --- periodontal --- bone loss --- LDL --- vitamin D --- CBCT --- radiographic bone loss --- sarcopenic dysphagia --- sarcopenia --- dysphagia --- osteoporosis --- elderly --- probiotic --- clinical parameters --- prevention --- therapeutics --- questionnaires --- erosion --- young adults --- tooth wear --- dentistry --- inflammation --- Mediterranean diet --- periodontology --- caries --- stable isotope analysis --- bioarcheology
Choose an application
The protection of human health and the environment (representing the main reason for waste management), as well as the sustainable use of natural resources, requires chemical, biological, physical and thermal treatment of wastes. This refers to the conditioning (e.g., drying, washing, comminution, rotting, stabilization, neutralization, agglomeration, homogenization), conversion (e.g., incineration, pyrolysis, gasification, dissolution, evaporation), and separation (classification, direct and indirect (i.e., sensor-based) sorting) of all types of wastes to follow the principles of the waste hierarchy (i.e., prevention (not addressed by this issue), preparation for re-use, recycling, other recovery, and disposal). Longstanding challenges include the increase of yield and purity of recyclable fractions and the sustainable removal or destruction of contaminants from the circular economy.This Special Issue on “Advanced Technology of Waste Treatment” of Processes collects high-quality research studies addressing challenges on the broad area of chemical, biological, physical and thermal treatment of wastes.
Technology: general issues --- History of engineering & technology --- selective Cu(II) separation --- sustainable waste treatment --- municipal solid waste --- polymer-assisted ultrafiltration --- real fly ash extracts --- urban mining --- pilot installation --- MSWI fly ash --- properties of fly ash --- acid leaching --- heavy metal recovery --- marine litter --- waste treatment --- plastic waste --- pyrolysis --- gasification --- incineration --- thermogravimetric analysis --- biotechnological upcycling --- plastics recycling --- feedstock recycling --- plastic pyrolysis --- lumped modeling --- kinetic modeling --- ReOil --- risk modelling --- portable batteries --- lithium batteries --- fire hazards --- waste management --- lithium-ion-batteries --- pyrometallurgical recycling --- carbothermal reduction --- wood ash treatment --- chromate reduction --- hot alkaline extraction --- recycling --- refractory --- regenerate --- electrodynamic fragmentation --- innovative process --- process optimization --- enhanced landfill mining --- NEW-MINE --- particle size distribution --- compositional data analysis --- simplex --- isometric log-ratios --- multivariate multiple linear regression --- mechanical processing --- commercial waste --- shredder --- chemical recycling --- wet-mechanical processing --- polyolefins --- circular economy --- WEEE --- recovery of aromatics --- oil upgrading --- dehalogenation --- hydrothermal carbonization --- sewage sludge --- phosphorus recovery --- hydrochar --- process-water --- pH --- mixed waste --- municipal waste --- recovery --- contaminants --- plastics --- digitalisation --- smart waste factory --- selective Cu(II) separation --- sustainable waste treatment --- municipal solid waste --- polymer-assisted ultrafiltration --- real fly ash extracts --- urban mining --- pilot installation --- MSWI fly ash --- properties of fly ash --- acid leaching --- heavy metal recovery --- marine litter --- waste treatment --- plastic waste --- pyrolysis --- gasification --- incineration --- thermogravimetric analysis --- biotechnological upcycling --- plastics recycling --- feedstock recycling --- plastic pyrolysis --- lumped modeling --- kinetic modeling --- ReOil --- risk modelling --- portable batteries --- lithium batteries --- fire hazards --- waste management --- lithium-ion-batteries --- pyrometallurgical recycling --- carbothermal reduction --- wood ash treatment --- chromate reduction --- hot alkaline extraction --- recycling --- refractory --- regenerate --- electrodynamic fragmentation --- innovative process --- process optimization --- enhanced landfill mining --- NEW-MINE --- particle size distribution --- compositional data analysis --- simplex --- isometric log-ratios --- multivariate multiple linear regression --- mechanical processing --- commercial waste --- shredder --- chemical recycling --- wet-mechanical processing --- polyolefins --- circular economy --- WEEE --- recovery of aromatics --- oil upgrading --- dehalogenation --- hydrothermal carbonization --- sewage sludge --- phosphorus recovery --- hydrochar --- process-water --- pH --- mixed waste --- municipal waste --- recovery --- contaminants --- plastics --- digitalisation --- smart waste factory
Listing 1 - 9 of 9 |
Sort by
|