Listing 1 - 2 of 2 |
Sort by
|
Choose an application
The interaction of bacteria with biomaterials’ surfaces has critical clinical implications on the development and progression of biofilm-related diseases. In this book "Bacterial Interactions with Dental and Medical Materials", encouraging findings on tissue-contacting biomaterials to control biofilms, enhanced understanding of key mechanisms, and clinical perspectives are discussed toward improving healthcare.
polymer --- dental --- antibacterial --- antifouling --- hydroxyapatite --- star-shaped --- hydrophobicity --- acrylic acid --- oral --- composition --- antimicrobial effect --- biofilms --- cytotoxicity --- dental resins --- physicochemical properties --- mechanical properties --- quaternary ammonium methacrylates --- dental materials --- dentistry --- adhesives --- light-curing of dental adhesives --- composite resins --- methylmethacrylate --- oxides --- cerium --- polymers --- dentine bonding agents --- anti-bacterial agents --- dental caries --- biocompatible materials --- quaternary ammonium compounds --- antimicrobial --- ceramic --- coating --- silicon carbide --- fluoride(s) --- biofilm(s) --- Streptococcus mutans --- bioreactor(s) --- enamel --- composite materials --- biomaterials --- nanostructured materials --- chronic wounds --- infection --- chick embryo CAM --- ex ovo --- bioactive desensitizer --- hypersensitivity --- SEM --- nanoparticle --- nanohydroxyapatite --- microshear bond strength --- phosphoric acid --- self-etch --- porous bioceramics --- wollastonite --- sol-gel technology --- spark plasma sintering–reactive synthesis --- bacterial test --- surface modification --- coatings --- implant --- biofilm --- silver --- copper --- polylysine --- dental composites --- protein repellent --- restorations --- zwitterionic polymers --- dental composite --- antibiofilm --- dental nanocomposite --- calcium fluoride nanoparticles --- remineralization --- oral biofilm --- electrospinning --- nano-hydroxyapatite --- toxicity --- bone regeneration --- white spot lesions --- orthodontic --- n/a --- spark plasma sintering-reactive synthesis
Choose an application
The interaction of bacteria with biomaterials’ surfaces has critical clinical implications on the development and progression of biofilm-related diseases. In this book "Bacterial Interactions with Dental and Medical Materials", encouraging findings on tissue-contacting biomaterials to control biofilms, enhanced understanding of key mechanisms, and clinical perspectives are discussed toward improving healthcare.
Research & information: general --- polymer --- dental --- antibacterial --- antifouling --- hydroxyapatite --- star-shaped --- hydrophobicity --- acrylic acid --- oral --- composition --- antimicrobial effect --- biofilms --- cytotoxicity --- dental resins --- physicochemical properties --- mechanical properties --- quaternary ammonium methacrylates --- dental materials --- dentistry --- adhesives --- light-curing of dental adhesives --- composite resins --- methylmethacrylate --- oxides --- cerium --- polymers --- dentine bonding agents --- anti-bacterial agents --- dental caries --- biocompatible materials --- quaternary ammonium compounds --- antimicrobial --- ceramic --- coating --- silicon carbide --- fluoride(s) --- biofilm(s) --- Streptococcus mutans --- bioreactor(s) --- enamel --- composite materials --- biomaterials --- nanostructured materials --- chronic wounds --- infection --- chick embryo CAM --- ex ovo --- bioactive desensitizer --- hypersensitivity --- SEM --- nanoparticle --- nanohydroxyapatite --- microshear bond strength --- phosphoric acid --- self-etch --- porous bioceramics --- wollastonite --- sol-gel technology --- spark plasma sintering-reactive synthesis --- bacterial test --- surface modification --- coatings --- implant --- biofilm --- silver --- copper --- polylysine --- dental composites --- protein repellent --- restorations --- zwitterionic polymers --- dental composite --- antibiofilm --- dental nanocomposite --- calcium fluoride nanoparticles --- remineralization --- oral biofilm --- electrospinning --- nano-hydroxyapatite --- toxicity --- bone regeneration --- white spot lesions --- orthodontic --- polymer --- dental --- antibacterial --- antifouling --- hydroxyapatite --- star-shaped --- hydrophobicity --- acrylic acid --- oral --- composition --- antimicrobial effect --- biofilms --- cytotoxicity --- dental resins --- physicochemical properties --- mechanical properties --- quaternary ammonium methacrylates --- dental materials --- dentistry --- adhesives --- light-curing of dental adhesives --- composite resins --- methylmethacrylate --- oxides --- cerium --- polymers --- dentine bonding agents --- anti-bacterial agents --- dental caries --- biocompatible materials --- quaternary ammonium compounds --- antimicrobial --- ceramic --- coating --- silicon carbide --- fluoride(s) --- biofilm(s) --- Streptococcus mutans --- bioreactor(s) --- enamel --- composite materials --- biomaterials --- nanostructured materials --- chronic wounds --- infection --- chick embryo CAM --- ex ovo --- bioactive desensitizer --- hypersensitivity --- SEM --- nanoparticle --- nanohydroxyapatite --- microshear bond strength --- phosphoric acid --- self-etch --- porous bioceramics --- wollastonite --- sol-gel technology --- spark plasma sintering-reactive synthesis --- bacterial test --- surface modification --- coatings --- implant --- biofilm --- silver --- copper --- polylysine --- dental composites --- protein repellent --- restorations --- zwitterionic polymers --- dental composite --- antibiofilm --- dental nanocomposite --- calcium fluoride nanoparticles --- remineralization --- oral biofilm --- electrospinning --- nano-hydroxyapatite --- toxicity --- bone regeneration --- white spot lesions --- orthodontic
Listing 1 - 2 of 2 |
Sort by
|