Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Traces keep time and make the past visible. As such, they continue to be a fundamental resource for scientific knowledge production in modernity. While the art of trace reading is a millennia-old practice, tracings are specifically produced in the photographic archive or in the scientific laboratory. The material traces of the forms represent the objects and causes to which they owe their existence while making them invisible at the moment of their visualization. By looking at different techniques for the production of traces and their changes over two centuries, the contributions show the continuities they have, both in the laboratories and in large colliders of particle physics. This volume, inspired by Carlo Ginzburg's early works, formulates a theory of traces for the 21st century.
Cell interaction. --- Systemic memory hypothesis. --- Cellular recognition. --- Evidence. --- Proof --- Belief and doubt --- Faith --- Logic --- Philosophy --- Truth --- Cell recognition --- Self-recognition (Immunology) --- Cell interaction --- Immunology --- Cellular memory hypothesis --- Hypothesis, Cellular memory --- Hypothesis, Systemic memory --- Memory --- Cell-cell interaction --- Cell communication --- Cellular communication (Biology) --- Cellular interaction --- Intercellular communication --- Cellular control mechanisms --- Systemic memory hypothesis --- Cellular recognition --- Evidence --- Biologie --- Mémoire --- natural science. --- trace production.
Choose an application
This open access textbook leads the reader from basic concepts of chromatin structure and function and RNA mechanisms to the understanding of epigenetics, imprinting, regeneration and reprogramming. The textbook treats epigenetic phenomena in animals, as well as plants. Written by four internationally known experts and senior lecturers in this field, it provides a valuable tool for Master- and PhD- students who need to comprehend the principles of epigenetics, or wish to gain a deeper knowledge in this field. After reading this book, the student will: Have an understanding of the basic toolbox of epigenetic regulation; Know how genetic and epigenetic information layers are interconnected; Be able to explain complex epigenetic phenomena by understanding the structures and principles of the underlying molecular mechanisms; Understand how misregulated epigenetic mechanisms can lead to disease.
Epigenetics. --- Genetic regulation. --- Molecular genetics. --- Genetics --- Molecular biology --- Gene expression --- Gene expression regulation --- Gene regulation --- Biosynthesis --- Cellular control mechanisms --- Molecular genetics --- Regulation --- Genetics and Genomics --- Biomedicine, general --- Cell Biology --- Human Genetics --- Epigenetics --- Biomedical Research --- Medical Genetics --- Cancer --- Chromatin --- Chromatin Dynamics --- Cellular Memory --- DNA Methylation --- Epigenetic Textbook --- Gene Regulation --- Gene Silencing --- Histone Modification --- Imprinting --- Inheritance --- Metabolism --- Nucleus --- Open Access --- Pluripotency --- Reprogramming --- RNA Mechanisms --- Transcription --- X Chromosome inactivation --- Genetics (non-medical) --- Medical research --- Cellular biology (cytology) --- Epigenètica
Choose an application
“Symmetry Breaking in Cells and Tissues” presents a collection of seventeen reviews, opinions and original research papers contributed by theoreticians, physicists and mathematicians, as well as experimental biologists, united by a common interest in biological pattern formation and morphogenesis. The contributors discuss diverse manifestations of symmetry breaking in biology and showcase recent developments in experimental and theoretical approaches to biological morphogenesis and pattern formation on multiple scales.
Research & information: general --- Biology, life sciences --- actin waves --- curved proteins --- dynamic instability --- podosomes --- diffusion --- cell polarity --- Cdc42 --- stress --- cellular memory --- phase separation --- prions --- apoptotic extrusion --- oncogenic extrusion --- contractility --- actomyosin --- bottom-up synthetic biology --- motor proteins --- pattern formation --- self-organization --- cell motility --- signal transduction --- actin dynamics --- intracellular waves --- polarization --- direction sensing --- symmetry-breaking --- biphasic responses --- reaction-diffusion --- membrane and cortical tension --- cell fusion --- cortexillin --- cytokinesis --- Dictyostelium --- myosin --- symmetry breaking --- cytoplasmic flow --- phase-space analysis --- nonlinear waves --- actin polymerization --- bifurcation theory --- mass conservation --- spatial localization --- activator–inhibitor models --- developmental transitions --- cell polarization --- mathematical model --- fission yeast --- reaction–diffusion model --- small GTPases --- Cdc42 oscillations --- pseudopod --- Ras activation --- cytoskeleton --- chemotaxis --- neutrophils --- natural variation --- modelling --- activator-substrate mechanism --- mass-conserved models --- intracellular polarization --- partial differential equations --- sensitivity analysis --- GTPase activating protein (GAP) --- fission yeast Schizosaccharomyces pombe --- CRY2-CIBN --- optogenetics --- clustering --- positive feedback --- network evolution --- Saccharomyces cerevisiae --- polarity --- modularity --- neutrality --- n/a
Choose an application
“Symmetry Breaking in Cells and Tissues” presents a collection of seventeen reviews, opinions and original research papers contributed by theoreticians, physicists and mathematicians, as well as experimental biologists, united by a common interest in biological pattern formation and morphogenesis. The contributors discuss diverse manifestations of symmetry breaking in biology and showcase recent developments in experimental and theoretical approaches to biological morphogenesis and pattern formation on multiple scales.
actin waves --- curved proteins --- dynamic instability --- podosomes --- diffusion --- cell polarity --- Cdc42 --- stress --- cellular memory --- phase separation --- prions --- apoptotic extrusion --- oncogenic extrusion --- contractility --- actomyosin --- bottom-up synthetic biology --- motor proteins --- pattern formation --- self-organization --- cell motility --- signal transduction --- actin dynamics --- intracellular waves --- polarization --- direction sensing --- symmetry-breaking --- biphasic responses --- reaction-diffusion --- membrane and cortical tension --- cell fusion --- cortexillin --- cytokinesis --- Dictyostelium --- myosin --- symmetry breaking --- cytoplasmic flow --- phase-space analysis --- nonlinear waves --- actin polymerization --- bifurcation theory --- mass conservation --- spatial localization --- activator–inhibitor models --- developmental transitions --- cell polarization --- mathematical model --- fission yeast --- reaction–diffusion model --- small GTPases --- Cdc42 oscillations --- pseudopod --- Ras activation --- cytoskeleton --- chemotaxis --- neutrophils --- natural variation --- modelling --- activator-substrate mechanism --- mass-conserved models --- intracellular polarization --- partial differential equations --- sensitivity analysis --- GTPase activating protein (GAP) --- fission yeast Schizosaccharomyces pombe --- CRY2-CIBN --- optogenetics --- clustering --- positive feedback --- network evolution --- Saccharomyces cerevisiae --- polarity --- modularity --- neutrality --- n/a
Choose an application
“Symmetry Breaking in Cells and Tissues” presents a collection of seventeen reviews, opinions and original research papers contributed by theoreticians, physicists and mathematicians, as well as experimental biologists, united by a common interest in biological pattern formation and morphogenesis. The contributors discuss diverse manifestations of symmetry breaking in biology and showcase recent developments in experimental and theoretical approaches to biological morphogenesis and pattern formation on multiple scales.
Research & information: general --- Biology, life sciences --- actin waves --- curved proteins --- dynamic instability --- podosomes --- diffusion --- cell polarity --- Cdc42 --- stress --- cellular memory --- phase separation --- prions --- apoptotic extrusion --- oncogenic extrusion --- contractility --- actomyosin --- bottom-up synthetic biology --- motor proteins --- pattern formation --- self-organization --- cell motility --- signal transduction --- actin dynamics --- intracellular waves --- polarization --- direction sensing --- symmetry-breaking --- biphasic responses --- reaction-diffusion --- membrane and cortical tension --- cell fusion --- cortexillin --- cytokinesis --- Dictyostelium --- myosin --- symmetry breaking --- cytoplasmic flow --- phase-space analysis --- nonlinear waves --- actin polymerization --- bifurcation theory --- mass conservation --- spatial localization --- activator–inhibitor models --- developmental transitions --- cell polarization --- mathematical model --- fission yeast --- reaction–diffusion model --- small GTPases --- Cdc42 oscillations --- pseudopod --- Ras activation --- cytoskeleton --- chemotaxis --- neutrophils --- natural variation --- modelling --- activator-substrate mechanism --- mass-conserved models --- intracellular polarization --- partial differential equations --- sensitivity analysis --- GTPase activating protein (GAP) --- fission yeast Schizosaccharomyces pombe --- CRY2-CIBN --- optogenetics --- clustering --- positive feedback --- network evolution --- Saccharomyces cerevisiae --- polarity --- modularity --- neutrality
Listing 1 - 5 of 5 |
Sort by
|