Narrow your search
Listing 1 - 10 of 21 << page
of 3
>>
Sort by

Dissertation
Potentiel d'optimisation de l'efficience de la nutrition azotée du froment d'hier (Triticum Aestivum L.) au moyen de l'application d'un biostimulant foliaire à base de zéolithe
Authors: --- --- --- --- --- et al.
Year: 2024 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

La gestion de la fertilisation azotée des plantes est un enjeu majeur pour le développement des pratiques agricoles durables, tant pour la préservation de l'environnement que pour le maintien de rendements suffisants face à une population mondiale croissante. Une approche prometteuse pour atteindre cet objectif est l'amélioration de l'efficience du prélèvement de l'azote par les plantes. Les biostimulants végétaux, tels que la zéolithe, pourraient jouer un rôle clé dans ce processus. La zéolithe, un minéral bénéfique, est reconnue comme amendement du sol et pour ses propriétés de rétention et d'échange ionique. Elle peut donc potentiellement réduire les pertes d'azote et améliorer la disponibilité de l'azote pour les plantes. Cependant, ses effets par application foliaire restent encore peu étudiés. Cette étude menée en Belgique vise à évaluer le potentiel d'optimisation de la nutrition azotée du blé tendre (Triticum aestivum L.) au moyen de l'application foliaire de la zéolithe à trois niveaux (0, 2 et 3 kg/ha) à différents stades critiques de son développement (tallage, redressement, deuxième noeud et dernière feuille). L'apport d'azote a été pensé en 3 niveaux : 0, 120 et 180 unités par hectare. Pour atteindre cet objectif, la réponse des caractéristiques écophysiologiques du blé tendre (Triticum aestivum L.), notamment la productivité de la biomasse aérienne, l'activité photosynthétique et l'absorption de l'azote ont été étudiées. Les résultats montrent que l'application de zéolithe, en combinaison avec des niveaux modérés de fertilisation azotée, n'améliore pas significativement la productivité de la biomasse ni l'absorption de l'azote, en comparaison avec l'absence de zéolithe. Cependant, le stade d'application de la zéolithe a permis de montrer l'importance de la fraction au stade tallage. Le schéma de fertilisation combiné avec la zéolithe permettant une production de biomasse correcte et un prélèvement proche de l'optimum et une réduction de la dose d'azote appliquée est le suivant : 120 unités d'azote combiné avec 3 kg de de zéolithe au stade tallage, redressement et dernière feuille. &#13;En conclusion, l'utilisation de la zéolithe s'avère être une solution prometteuse pour améliorer la nutrition azotée des cultures, bien que les résultats soient basés sur des expérimentations sur des parcelles destructives. Des études à plus grande échelle, incluant des essais de rendements et sur plusieurs années, sont nécessaires pour confirmer ces résultats et évaluer pleinement les avantages potentiels de la zéolithe dans divers contextes pédoclimatiques.


Dissertation
Identification des activités de diversification envisageables pour Prayon dans le secteur des microalgues et évaluation de celles-ci au moyen d'une grille d'évaluation multicritère
Authors: --- --- --- ---
Year: 2017 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of microalgae currently benefits from a growing interest in different fields. It is the reflection of an enormous potential for several commercial applications. As an innovative company, Prayon is considering diversifying its activities in the sector of microalgae as far as the opportunities are coherent with its own strategy. &#13;This project thesis conducted within Prayon consisted in the realisation of the first phase of the innovation process. &#13;The aim of the work was first to identify different activities in which Prayon could diversify. The choice was made taking into account the strategy of Prayon as well as the different openings that microalgae offer. &#13;The second part of the project aimed for the analyse and evaluation of these activities. In order to collect comprehensive information on the subject, desk and field research was conducted. The field research involved the interview of various experts. &#13;A multicriteria evaluation grid was established and the five activities were rated, allowing us to identify the most interesting choices for Prayon. &#13;From this evaluation it has emerged that the best activity for Prayon is the scaling up of the harvesting, filtration and extraction processes for companies active in the production of microalgae for food additives. The potential business model of this activity has been described in the Business Model Canvas.


Dissertation
Producing advanced bio-based fertilizers from industrial side-streams of fish processing
Authors: --- --- --- --- --- et al.
Year: 2022 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

De nos jours en Europe, l’agriculture doit faire face à une multitude de défis dont répondre aux besoins alimentaires de la population croissante, respecter davantage l’environnement, devenir moins dépendant des pays tiers en ce qui concerne les intrants (p.ex. les fertilisants), … Plusieurs projets voient le jour pour initier des améliorations innovantes. Parmi ceux-ci, le projet SEA2LAND a été mis en place avec pour objectif de produire des fertilisants d’origine biologique à partir de sous-produits des industries de la pêche et du secteur aquacole en Europe. Dans ce contexte, cette étude se focalise sur l’élaboration d’un hydrolysat contenant des acides aminés libres, à partir de la saumure de cuisson du thon, qui sera utilisé plus tard comme ingrédient pour la formulation d’un nouveau biostimulant. Pour ce faire, des essais en deux étapes ont été mis en place : une désalinisation de la saumure, des tests d’hydrolyses avec différentes combinaisons d’enzymes. Les résultats des analyses de la phase liquide ont montré que la combinaison des enzymes Alcalase et Protana Prime a été la plus efficiente avec 18% d’acides aminés libres parmi le contenu total en protéines. Cependant, les résultats attendus étaient bien plus élevés (86% avec les viscères de truites (Dominguez, 2022)). Deux hypothèses ont été émises : le contenu en NaCl qui aurait pu affecter les protéines de la saumure durant la cuisson et/ou l’excès/le déséquilibre en Na+ qui aurait pu affecter les protéines de la saumure et/ou les enzymes durant les hydrolyses.


Book
Towards the Use of Natural Compounds for Crop Protection and Food Safety
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In consideration of the ever-increasing global population, the demand for food—and on food-production—is massive. It is critical that we are able to meet this demand and mitigate the risks and factors that challenge our ability to do so, including pestilence to food crops and biological threats to food safety, before food reaches the consumer. As such, the advancement of measures to both protect crops and facilitate the surety of safe food products to end-users is a research area of great interest and growing development. This book details exciting new research into the use of natural compounds for the protection of crops and food products. From essential oils and their potential uses as naturally derived antimicrobial agents to the use of carbon dioxide as a pesticide and the use of biofertilisers, the articles herein describe and review cutting edge research in this area to help facilitate a more sustainable future.

Keywords

Research & information: general --- Biology, life sciences --- phenolic acids --- escarole --- bioactive compounds --- biofertilizer --- flavonols --- Solanum lycopersicum L. --- genetic variability --- quality --- food composition --- biostimulant --- plant tropical extract --- apricot --- CO2 gas --- qualitative traits --- warehouse pest --- linalool --- Listeria monocytogenes --- antimicrobial --- proteomics --- meagre --- Argyrosomus regius --- cold smoking --- natural antioxidants --- halophyte --- aquaculture --- value-added food product --- shelf-life --- fillets --- fish quality --- essential oils --- aromatic plants --- antifungal --- anti-germinative --- herbicidal --- insecticidal --- essential oil --- peel --- antibacterial --- mechanism of action --- preservation --- phenolic acids --- escarole --- bioactive compounds --- biofertilizer --- flavonols --- Solanum lycopersicum L. --- genetic variability --- quality --- food composition --- biostimulant --- plant tropical extract --- apricot --- CO2 gas --- qualitative traits --- warehouse pest --- linalool --- Listeria monocytogenes --- antimicrobial --- proteomics --- meagre --- Argyrosomus regius --- cold smoking --- natural antioxidants --- halophyte --- aquaculture --- value-added food product --- shelf-life --- fillets --- fish quality --- essential oils --- aromatic plants --- antifungal --- anti-germinative --- herbicidal --- insecticidal --- essential oil --- peel --- antibacterial --- mechanism of action --- preservation


Book
Towards the Use of Natural Compounds for Crop Protection and Food Safety
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In consideration of the ever-increasing global population, the demand for food—and on food-production—is massive. It is critical that we are able to meet this demand and mitigate the risks and factors that challenge our ability to do so, including pestilence to food crops and biological threats to food safety, before food reaches the consumer. As such, the advancement of measures to both protect crops and facilitate the surety of safe food products to end-users is a research area of great interest and growing development. This book details exciting new research into the use of natural compounds for the protection of crops and food products. From essential oils and their potential uses as naturally derived antimicrobial agents to the use of carbon dioxide as a pesticide and the use of biofertilisers, the articles herein describe and review cutting edge research in this area to help facilitate a more sustainable future.


Book
Toward a Sustainable Agriculture Through Plant Biostimulants : From Experimental Data to Practical Applications
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the past decade, interest in plant biostimulants has been on the rise, compelled by the growing interest of researchers, extension specialists, private industries, and farmers in integrating these products in the array of environmentally friendly tools to secure improved crop performance, nutrient efficiency, product quality, and yield stability. Plant biostimulants include diverse organic and inorganic substances, natural compounds, and/or beneficial microorganisms such as humic acids, protein hydrolysates, seaweed and plant extracts, silicon, endophytic fungi like mycorrhizal fungi, and plant growth-promoting rhizobacteria belonging to the genera Azospirillum, Azotobacter, and Rhizobium. Other substances (e.g., chitosan and other biopolymers and inorganic compounds) can have biostimulant properties, but their classification within the group of biostimulants is still under consideration. Plant biostimulants are usually applied to high-value crops, mainly greenhouse crops, fruit trees and vines, open-field crops, flowers, and ornamentals to sustainably increase yield and product quality. The global biostimulant market is currently estimated at about $2.0 billion and is expected to reach $3.0 billion by 2021 at an annual growth rate of 13%. A growing interest in plant biostimulants from industries and scientists was demonstrated by the high number of published peer-reviewed articles, conferences, workshops, and symposia in the past ten years. This book compiles several original research articles, technology reports, methods, opinions, perspectives, and invited reviews and mini reviews dissecting the biostimulatory action of these natural compounds and substances and beneficial microorganisms on crops grown under optimal and suboptimal growing conditions (e.g., salinity, drought, nutrient deficiency and toxicity, heavy metal contaminations, waterlogging, and adverse soil pH conditions). Also included are contributions dealing with the effect as well as the molecular and physiological mechanisms of plant biostimulants on nutrient efficiency, product quality, and modulation of the microbial population both quantitatively and qualitatively. In addition, identification and understanding of the optimal method, time, rate of application and phenological stage for improving plant performance and resilience to stress as well as the best combinations of plant species/cultivar × environment × management practices are also reported. We strongly believe that high standard reflected in this compilation on the principles and practices of plant biostimulants will foster knowledge transfer among scientific communities, industries, and agronomists, and will enable a better understanding of the mode of action and application procedures of biostimulants in different cropping systems.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- Crocus sativus L. --- biofertilization --- arbuscular mycorrhizal fungi --- antioxidant activity --- crocin --- picrocrocin --- polyphenols --- safranal --- Maize --- biostimulant --- root --- stress --- growth --- gene expression --- stem cuttings --- propagation --- root morphology traits --- indole-3-acetic acid (IAA) --- indole-3-butyric acid (IBA) --- gibberellins --- phenolic compounds --- nutrients --- nutraceutical potential --- soybean --- yield --- N organic fertilizer --- seaweed extract --- mycorrhizal inoculants --- phosphate-solubilizing microorganisms --- biofertilizers --- microorganism consortium --- biostimulants --- Crocus sativus --- Funneliformis mosseae --- glasshouse --- protected cultivation --- Rhizophagus intraradices --- substrate --- L-methionine --- L-tryptophan --- L-glycine --- lettuce --- nitrogen --- plant biostimulant --- environmental stress --- vegetables --- fruit quality --- plants biostimulants --- yielding --- Biostimulants --- Euglena gracilis --- algal polysaccharide --- β-glucan --- water stress --- tomato --- aeroponics --- Zea mays L --- lignohumate --- lignosulfonate --- biological activity --- nitrogen metabolism --- carbon metabolism --- proteins --- phenolics --- sugars --- Ascophyllum nodosum --- Solanum melongena --- heterostyly --- pollination efficiency --- soilless conditions --- abiotic stress --- alfalfa hydrolysate --- chitosan --- zinc --- ascorbic acid --- Fragaria x ananassa --- functional quality --- lycopene --- organic farming --- protein hydrolysate --- Solanum lycopersicum L. --- tropical plant extract --- fertilizer --- melatonin --- phytomelatonin --- plant protector --- plant stress --- Lactuca sativa L. --- legume-derived protein hydrolysate --- nitrate --- Septoria --- wheat --- Paraburkholderia phytofirmans --- thyme essential oil --- isotope --- phytoparasitic nematodes --- suppressiveness --- sustainable management --- anti-nutritional substances --- fat --- fibre --- morphotype --- protein --- corn --- imaging --- industrial crops --- maize --- next generation sequencing --- phenomics --- plant phenotyping --- row crops --- Bacillus subtilis --- carotenoids --- probiotics --- PGPR --- Mentha longifolia --- humic acid --- antioxidants --- arbuscular mycorrhizal symbiosis --- mycorrhizosphere --- AMF associated bacteria --- plant growth-promoting bacteria --- phosphate-solubilizing bacteria --- siderophore production --- soil enzymatic activity --- biological index fertility --- nitrogenase activity --- microelements fertilization (Ti, Si, B, Mo, Zn) --- seed coating --- cover crop --- vermicompost --- growth enhancement --- AM fungi --- PGPB --- water deficit --- common bean --- Glomus spp. --- organic acids --- pod quality --- seaweed extracts --- seed quality --- tocopherols --- total sugars --- bean --- amino acids --- phenols --- flavonoids --- microbial biostimulant --- non-microbial biostimulant --- Lactuca sativa L. var. longifolia --- mineral profile --- physiological mechanism --- photosynthesis --- biocontrol --- plant growth promotion --- soil inoculant --- Trichoderma --- Azotobacter --- Streptomyces --- deproteinized leaf juice --- fermentation --- lactic acid bacteria --- plant nutrition --- antioxidant capacity --- ornamental plants --- N fertilization --- nitrogen use efficiency --- leaf quality --- Spinacia oleracea L. --- sustainable agriculture --- Valerianella locusta L. --- isotopic labeling --- turfgrass --- humic acids --- leaf area index (LAI) --- specific leaf area (SLA) --- Soil Plant Analysis Development (SPAD) index --- tuber yield --- ultrasound-assisted water --- foliar spray --- Pterocladia capillacea --- bio-fertilizer --- growth parameters --- Jew’s Mallow --- CROPWAT model --- eco-friendly practices --- total ascorbic acid --- Mater-Bi® --- mineral composition --- SPAD index --- Bacillus thuringiensis --- Capsicum annuum --- microbiome --- strain-specific primer --- tracking --- sweet basil --- alfalfa brown juice --- biostimulation --- chlorophyll pigments --- histological changes --- humic substances --- protein hydrolysates --- silicon --- arbuscular mycorrhiza --- plant growth promoting rhizobacteria --- macroalgae --- microalgae --- abiotic stresses --- nutrient use efficiency --- physiological mechanisms


Book
Toward a Sustainable Agriculture Through Plant Biostimulants : From Experimental Data to Practical Applications
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the past decade, interest in plant biostimulants has been on the rise, compelled by the growing interest of researchers, extension specialists, private industries, and farmers in integrating these products in the array of environmentally friendly tools to secure improved crop performance, nutrient efficiency, product quality, and yield stability. Plant biostimulants include diverse organic and inorganic substances, natural compounds, and/or beneficial microorganisms such as humic acids, protein hydrolysates, seaweed and plant extracts, silicon, endophytic fungi like mycorrhizal fungi, and plant growth-promoting rhizobacteria belonging to the genera Azospirillum, Azotobacter, and Rhizobium. Other substances (e.g., chitosan and other biopolymers and inorganic compounds) can have biostimulant properties, but their classification within the group of biostimulants is still under consideration. Plant biostimulants are usually applied to high-value crops, mainly greenhouse crops, fruit trees and vines, open-field crops, flowers, and ornamentals to sustainably increase yield and product quality. The global biostimulant market is currently estimated at about $2.0 billion and is expected to reach $3.0 billion by 2021 at an annual growth rate of 13%. A growing interest in plant biostimulants from industries and scientists was demonstrated by the high number of published peer-reviewed articles, conferences, workshops, and symposia in the past ten years. This book compiles several original research articles, technology reports, methods, opinions, perspectives, and invited reviews and mini reviews dissecting the biostimulatory action of these natural compounds and substances and beneficial microorganisms on crops grown under optimal and suboptimal growing conditions (e.g., salinity, drought, nutrient deficiency and toxicity, heavy metal contaminations, waterlogging, and adverse soil pH conditions). Also included are contributions dealing with the effect as well as the molecular and physiological mechanisms of plant biostimulants on nutrient efficiency, product quality, and modulation of the microbial population both quantitatively and qualitatively. In addition, identification and understanding of the optimal method, time, rate of application and phenological stage for improving plant performance and resilience to stress as well as the best combinations of plant species/cultivar × environment × management practices are also reported. We strongly believe that high standard reflected in this compilation on the principles and practices of plant biostimulants will foster knowledge transfer among scientific communities, industries, and agronomists, and will enable a better understanding of the mode of action and application procedures of biostimulants in different cropping systems.

Keywords

Crocus sativus L. --- biofertilization --- arbuscular mycorrhizal fungi --- antioxidant activity --- crocin --- picrocrocin --- polyphenols --- safranal --- Maize --- biostimulant --- root --- stress --- growth --- gene expression --- stem cuttings --- propagation --- root morphology traits --- indole-3-acetic acid (IAA) --- indole-3-butyric acid (IBA) --- gibberellins --- phenolic compounds --- nutrients --- nutraceutical potential --- soybean --- yield --- N organic fertilizer --- seaweed extract --- mycorrhizal inoculants --- phosphate-solubilizing microorganisms --- biofertilizers --- microorganism consortium --- biostimulants --- Crocus sativus --- Funneliformis mosseae --- glasshouse --- protected cultivation --- Rhizophagus intraradices --- substrate --- L-methionine --- L-tryptophan --- L-glycine --- lettuce --- nitrogen --- plant biostimulant --- environmental stress --- vegetables --- fruit quality --- plants biostimulants --- yielding --- Biostimulants --- Euglena gracilis --- algal polysaccharide --- β-glucan --- water stress --- tomato --- aeroponics --- Zea mays L --- lignohumate --- lignosulfonate --- biological activity --- nitrogen metabolism --- carbon metabolism --- proteins --- phenolics --- sugars --- Ascophyllum nodosum --- Solanum melongena --- heterostyly --- pollination efficiency --- soilless conditions --- abiotic stress --- alfalfa hydrolysate --- chitosan --- zinc --- ascorbic acid --- Fragaria x ananassa --- functional quality --- lycopene --- organic farming --- protein hydrolysate --- Solanum lycopersicum L. --- tropical plant extract --- fertilizer --- melatonin --- phytomelatonin --- plant protector --- plant stress --- Lactuca sativa L. --- legume-derived protein hydrolysate --- nitrate --- Septoria --- wheat --- Paraburkholderia phytofirmans --- thyme essential oil --- isotope --- phytoparasitic nematodes --- suppressiveness --- sustainable management --- anti-nutritional substances --- fat --- fibre --- morphotype --- protein --- corn --- imaging --- industrial crops --- maize --- next generation sequencing --- phenomics --- plant phenotyping --- row crops --- Bacillus subtilis --- carotenoids --- probiotics --- PGPR --- Mentha longifolia --- humic acid --- antioxidants --- arbuscular mycorrhizal symbiosis --- mycorrhizosphere --- AMF associated bacteria --- plant growth-promoting bacteria --- phosphate-solubilizing bacteria --- siderophore production --- soil enzymatic activity --- biological index fertility --- nitrogenase activity --- microelements fertilization (Ti, Si, B, Mo, Zn) --- seed coating --- cover crop --- vermicompost --- growth enhancement --- AM fungi --- PGPB --- water deficit --- common bean --- Glomus spp. --- organic acids --- pod quality --- seaweed extracts --- seed quality --- tocopherols --- total sugars --- bean --- amino acids --- phenols --- flavonoids --- microbial biostimulant --- non-microbial biostimulant --- Lactuca sativa L. var. longifolia --- mineral profile --- physiological mechanism --- photosynthesis --- biocontrol --- plant growth promotion --- soil inoculant --- Trichoderma --- Azotobacter --- Streptomyces --- deproteinized leaf juice --- fermentation --- lactic acid bacteria --- plant nutrition --- antioxidant capacity --- ornamental plants --- N fertilization --- nitrogen use efficiency --- leaf quality --- Spinacia oleracea L. --- sustainable agriculture --- Valerianella locusta L. --- isotopic labeling --- turfgrass --- humic acids --- leaf area index (LAI) --- specific leaf area (SLA) --- Soil Plant Analysis Development (SPAD) index --- tuber yield --- ultrasound-assisted water --- foliar spray --- Pterocladia capillacea --- bio-fertilizer --- growth parameters --- Jew’s Mallow --- CROPWAT model --- eco-friendly practices --- total ascorbic acid --- Mater-Bi® --- mineral composition --- SPAD index --- Bacillus thuringiensis --- Capsicum annuum --- microbiome --- strain-specific primer --- tracking --- sweet basil --- alfalfa brown juice --- biostimulation --- chlorophyll pigments --- histological changes --- humic substances --- protein hydrolysates --- silicon --- arbuscular mycorrhiza --- plant growth promoting rhizobacteria --- macroalgae --- microalgae --- abiotic stresses --- nutrient use efficiency --- physiological mechanisms


Book
Toward a Sustainable Agriculture Through Plant Biostimulants : From Experimental Data to Practical Applications
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the past decade, interest in plant biostimulants has been on the rise, compelled by the growing interest of researchers, extension specialists, private industries, and farmers in integrating these products in the array of environmentally friendly tools to secure improved crop performance, nutrient efficiency, product quality, and yield stability. Plant biostimulants include diverse organic and inorganic substances, natural compounds, and/or beneficial microorganisms such as humic acids, protein hydrolysates, seaweed and plant extracts, silicon, endophytic fungi like mycorrhizal fungi, and plant growth-promoting rhizobacteria belonging to the genera Azospirillum, Azotobacter, and Rhizobium. Other substances (e.g., chitosan and other biopolymers and inorganic compounds) can have biostimulant properties, but their classification within the group of biostimulants is still under consideration. Plant biostimulants are usually applied to high-value crops, mainly greenhouse crops, fruit trees and vines, open-field crops, flowers, and ornamentals to sustainably increase yield and product quality. The global biostimulant market is currently estimated at about $2.0 billion and is expected to reach $3.0 billion by 2021 at an annual growth rate of 13%. A growing interest in plant biostimulants from industries and scientists was demonstrated by the high number of published peer-reviewed articles, conferences, workshops, and symposia in the past ten years. This book compiles several original research articles, technology reports, methods, opinions, perspectives, and invited reviews and mini reviews dissecting the biostimulatory action of these natural compounds and substances and beneficial microorganisms on crops grown under optimal and suboptimal growing conditions (e.g., salinity, drought, nutrient deficiency and toxicity, heavy metal contaminations, waterlogging, and adverse soil pH conditions). Also included are contributions dealing with the effect as well as the molecular and physiological mechanisms of plant biostimulants on nutrient efficiency, product quality, and modulation of the microbial population both quantitatively and qualitatively. In addition, identification and understanding of the optimal method, time, rate of application and phenological stage for improving plant performance and resilience to stress as well as the best combinations of plant species/cultivar × environment × management practices are also reported. We strongly believe that high standard reflected in this compilation on the principles and practices of plant biostimulants will foster knowledge transfer among scientific communities, industries, and agronomists, and will enable a better understanding of the mode of action and application procedures of biostimulants in different cropping systems.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- Crocus sativus L. --- biofertilization --- arbuscular mycorrhizal fungi --- antioxidant activity --- crocin --- picrocrocin --- polyphenols --- safranal --- Maize --- biostimulant --- root --- stress --- growth --- gene expression --- stem cuttings --- propagation --- root morphology traits --- indole-3-acetic acid (IAA) --- indole-3-butyric acid (IBA) --- gibberellins --- phenolic compounds --- nutrients --- nutraceutical potential --- soybean --- yield --- N organic fertilizer --- seaweed extract --- mycorrhizal inoculants --- phosphate-solubilizing microorganisms --- biofertilizers --- microorganism consortium --- biostimulants --- Crocus sativus --- Funneliformis mosseae --- glasshouse --- protected cultivation --- Rhizophagus intraradices --- substrate --- L-methionine --- L-tryptophan --- L-glycine --- lettuce --- nitrogen --- plant biostimulant --- environmental stress --- vegetables --- fruit quality --- plants biostimulants --- yielding --- Biostimulants --- Euglena gracilis --- algal polysaccharide --- β-glucan --- water stress --- tomato --- aeroponics --- Zea mays L --- lignohumate --- lignosulfonate --- biological activity --- nitrogen metabolism --- carbon metabolism --- proteins --- phenolics --- sugars --- Ascophyllum nodosum --- Solanum melongena --- heterostyly --- pollination efficiency --- soilless conditions --- abiotic stress --- alfalfa hydrolysate --- chitosan --- zinc --- ascorbic acid --- Fragaria x ananassa --- functional quality --- lycopene --- organic farming --- protein hydrolysate --- Solanum lycopersicum L. --- tropical plant extract --- fertilizer --- melatonin --- phytomelatonin --- plant protector --- plant stress --- Lactuca sativa L. --- legume-derived protein hydrolysate --- nitrate --- Septoria --- wheat --- Paraburkholderia phytofirmans --- thyme essential oil --- isotope --- phytoparasitic nematodes --- suppressiveness --- sustainable management --- anti-nutritional substances --- fat --- fibre --- morphotype --- protein --- corn --- imaging --- industrial crops --- maize --- next generation sequencing --- phenomics --- plant phenotyping --- row crops --- Bacillus subtilis --- carotenoids --- probiotics --- PGPR --- Mentha longifolia --- humic acid --- antioxidants --- arbuscular mycorrhizal symbiosis --- mycorrhizosphere --- AMF associated bacteria --- plant growth-promoting bacteria --- phosphate-solubilizing bacteria --- siderophore production --- soil enzymatic activity --- biological index fertility --- nitrogenase activity --- microelements fertilization (Ti, Si, B, Mo, Zn) --- seed coating --- cover crop --- vermicompost --- growth enhancement --- AM fungi --- PGPB --- water deficit --- common bean --- Glomus spp. --- organic acids --- pod quality --- seaweed extracts --- seed quality --- tocopherols --- total sugars --- bean --- amino acids --- phenols --- flavonoids --- microbial biostimulant --- non-microbial biostimulant --- Lactuca sativa L. var. longifolia --- mineral profile --- physiological mechanism --- photosynthesis --- biocontrol --- plant growth promotion --- soil inoculant --- Trichoderma --- Azotobacter --- Streptomyces --- deproteinized leaf juice --- fermentation --- lactic acid bacteria --- plant nutrition --- antioxidant capacity --- ornamental plants --- N fertilization --- nitrogen use efficiency --- leaf quality --- Spinacia oleracea L. --- sustainable agriculture --- Valerianella locusta L. --- isotopic labeling --- turfgrass --- humic acids --- leaf area index (LAI) --- specific leaf area (SLA) --- Soil Plant Analysis Development (SPAD) index --- tuber yield --- ultrasound-assisted water --- foliar spray --- Pterocladia capillacea --- bio-fertilizer --- growth parameters --- Jew’s Mallow --- CROPWAT model --- eco-friendly practices --- total ascorbic acid --- Mater-Bi® --- mineral composition --- SPAD index --- Bacillus thuringiensis --- Capsicum annuum --- microbiome --- strain-specific primer --- tracking --- sweet basil --- alfalfa brown juice --- biostimulation --- chlorophyll pigments --- histological changes --- humic substances --- protein hydrolysates --- silicon --- arbuscular mycorrhiza --- plant growth promoting rhizobacteria --- macroalgae --- microalgae --- abiotic stresses --- nutrient use efficiency --- physiological mechanisms --- Crocus sativus L. --- biofertilization --- arbuscular mycorrhizal fungi --- antioxidant activity --- crocin --- picrocrocin --- polyphenols --- safranal --- Maize --- biostimulant --- root --- stress --- growth --- gene expression --- stem cuttings --- propagation --- root morphology traits --- indole-3-acetic acid (IAA) --- indole-3-butyric acid (IBA) --- gibberellins --- phenolic compounds --- nutrients --- nutraceutical potential --- soybean --- yield --- N organic fertilizer --- seaweed extract --- mycorrhizal inoculants --- phosphate-solubilizing microorganisms --- biofertilizers --- microorganism consortium --- biostimulants --- Crocus sativus --- Funneliformis mosseae --- glasshouse --- protected cultivation --- Rhizophagus intraradices --- substrate --- L-methionine --- L-tryptophan --- L-glycine --- lettuce --- nitrogen --- plant biostimulant --- environmental stress --- vegetables --- fruit quality --- plants biostimulants --- yielding --- Biostimulants --- Euglena gracilis --- algal polysaccharide --- β-glucan --- water stress --- tomato --- aeroponics --- Zea mays L --- lignohumate --- lignosulfonate --- biological activity --- nitrogen metabolism --- carbon metabolism --- proteins --- phenolics --- sugars --- Ascophyllum nodosum --- Solanum melongena --- heterostyly --- pollination efficiency --- soilless conditions --- abiotic stress --- alfalfa hydrolysate --- chitosan --- zinc --- ascorbic acid --- Fragaria x ananassa --- functional quality --- lycopene --- organic farming --- protein hydrolysate --- Solanum lycopersicum L. --- tropical plant extract --- fertilizer --- melatonin --- phytomelatonin --- plant protector --- plant stress --- Lactuca sativa L. --- legume-derived protein hydrolysate --- nitrate --- Septoria --- wheat --- Paraburkholderia phytofirmans --- thyme essential oil --- isotope --- phytoparasitic nematodes --- suppressiveness --- sustainable management --- anti-nutritional substances --- fat --- fibre --- morphotype --- protein --- corn --- imaging --- industrial crops --- maize --- next generation sequencing --- phenomics --- plant phenotyping --- row crops --- Bacillus subtilis --- carotenoids --- probiotics --- PGPR --- Mentha longifolia --- humic acid --- antioxidants --- arbuscular mycorrhizal symbiosis --- mycorrhizosphere --- AMF associated bacteria --- plant growth-promoting bacteria --- phosphate-solubilizing bacteria --- siderophore production --- soil enzymatic activity --- biological index fertility --- nitrogenase activity --- microelements fertilization (Ti, Si, B, Mo, Zn) --- seed coating --- cover crop --- vermicompost --- growth enhancement --- AM fungi --- PGPB --- water deficit --- common bean --- Glomus spp. --- organic acids --- pod quality --- seaweed extracts --- seed quality --- tocopherols --- total sugars --- bean --- amino acids --- phenols --- flavonoids --- microbial biostimulant --- non-microbial biostimulant --- Lactuca sativa L. var. longifolia --- mineral profile --- physiological mechanism --- photosynthesis --- biocontrol --- plant growth promotion --- soil inoculant --- Trichoderma --- Azotobacter --- Streptomyces --- deproteinized leaf juice --- fermentation --- lactic acid bacteria --- plant nutrition --- antioxidant capacity --- ornamental plants --- N fertilization --- nitrogen use efficiency --- leaf quality --- Spinacia oleracea L. --- sustainable agriculture --- Valerianella locusta L. --- isotopic labeling --- turfgrass --- humic acids --- leaf area index (LAI) --- specific leaf area (SLA) --- Soil Plant Analysis Development (SPAD) index --- tuber yield --- ultrasound-assisted water --- foliar spray --- Pterocladia capillacea --- bio-fertilizer --- growth parameters --- Jew’s Mallow --- CROPWAT model --- eco-friendly practices --- total ascorbic acid --- Mater-Bi® --- mineral composition --- SPAD index --- Bacillus thuringiensis --- Capsicum annuum --- microbiome --- strain-specific primer --- tracking --- sweet basil --- alfalfa brown juice --- biostimulation --- chlorophyll pigments --- histological changes --- humic substances --- protein hydrolysates --- silicon --- arbuscular mycorrhiza --- plant growth promoting rhizobacteria --- macroalgae --- microalgae --- abiotic stresses --- nutrient use efficiency --- physiological mechanisms


Book
Natural Degradation: Polymer Degradation under Different Conditions
Authors: ---
ISBN: 3036551344 3036551336 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on some fundamental issues of polymers’ natural degradation. It is mostly devoted to the different aspects of biodegradation, but some data on the action of water, oxygen, ozone, and UV/Vis light is also included. The consideration of the biodegradation in vivo as the superposition of decay and synthesis provides the opportunity for a fresh look at well-known processes.

Keywords

Research & information: general --- Chemistry --- gelatin methacryloyl --- osteoinduction --- tannic acid --- crosslinking --- hydrogel --- biodegradable --- poly(3-hydroxybutyrate) --- chitosan --- electrospinning --- thermal oxidation --- biodegradation --- Sturm’s method --- biodegradation rates --- arterial hypertension --- vertebral cartilage --- rhomboid fossa --- anaerobic digestion --- biosorbent --- biostimulant --- magnetite --- nanoparticles --- kinetic model --- polyvinyl chloride (PVC) --- pyrolysis --- thermogravimetric analysis (TGA) --- kinetics --- thermodynamics --- artificial neural networks (ANN) --- mechanochemical method --- recycled polyurethane foam --- orthogonal test --- tensile strength --- thermal conductivity --- enzymatic hydrolysis --- deep eutectic solvents --- polyethylene terephthalate --- Box-Behnken design --- microwave depolymerization --- biodegradable polyester --- ultrafine electrospun fibers --- tetraphenylporphyrin --- metalloporphyrin complexes --- Fe(III) --- Sn(IV) --- X-ray diffraction --- DSC --- spin probe EPR method --- SEM --- biopolymeric nanoparticles --- synthesis --- applications --- medicine --- agriculture --- mechanical recycling --- closed-loop --- polyolefins --- circular testing --- polymer degradation --- epoxy resin --- composite material --- hygrothermal ageing --- water diffusion --- Fick model deviation --- statistical analysis --- box plot --- PCA --- titanium silicon oxide --- hydrolytic degradation --- titania --- silica --- antimicrobial activity --- photocatalytic degradation --- n/a --- Sturm's method


Book
Plant Responses to Stress and Environmental Stimulus
Author:
ISBN: 3036557792 3036557806 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plants respond to diverse environmental stimuli such as light, nutrients, temperature, and oxygen, which shape their growth and fate. When these stimuli are suboptimal for adequate plant growth, they cause stress. This book is a collection of research articles providing evidence about plant responses to stresses and environmental stimuli, as well as new methodologies for plant phenotyping.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- abiotic stress tolerance --- ascorbate (AsA) --- cad2-1 --- glutathione (GSH) --- leaf area --- photosynthesis --- root architecture --- seed germination --- vtc2-4 --- vtc5-2 --- expression profiling --- heterosis --- salinity stress --- seedlings --- rice --- nets --- sun chemical protectants --- sunscald --- climate changes --- field identification --- drought resistance --- japonica rice --- germplasm --- agronomic trait --- chili and bell pepper --- low temperature stress --- vegetative and reproductive traits --- pepper breeding --- PCA --- hierarchical cluster analysis --- Olea europaea L. --- drought stress --- stem water potential --- fruit growth --- oil content --- polyphenols --- allopathy --- Beta vulgaris L. --- Brassica rapa L. var. japonica --- Lactuca sativa L. --- phenolic compounds --- Valerianella locusta Laterr. --- bud --- bud burst --- development --- dormancy --- explants --- field capacity --- gravimetric water content --- grapevine --- perennial plants --- water --- biofertilizer --- Glomus mosseae --- colonization --- biostimulant --- FRAP --- legumes --- cover crops --- drought --- biological nitrogen fixation --- water use efficiency --- nitrogen use efficiency --- stable isotopes --- stomatal conductance --- mathematical modeling --- crop breeding --- water stress --- elemental sulphur --- sulphate --- macroelements --- microelements --- Triticum durum --- Triticum turgidum --- abiotic stress --- phenotyping --- Win-RHIZO --- n/a

Listing 1 - 10 of 21 << page
of 3
>>
Sort by