Listing 1 - 2 of 2 |
Sort by
|
Choose an application
This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.
Algebra --- Groups & group theory --- Number theory --- Associative Rings and Algebras --- Group Theory and Generalizations --- Number Theory --- Open Access --- Quaternions --- Quaternion algebras --- Quaternion orders --- Quaternion ideals --- Noncommutative algebra --- Quaternions and quadratic forms --- Ternary quadratic forms --- Simple algebras and involutions --- Lattices and integral quadratic forms --- Hurwitz order --- Quaternion algebras over local fields --- Quaternion algebras over global fields --- Adelic framework --- Idelic zeta functions --- Quaternions hyperbolic geometry --- Quaternions arithmetic groups --- Quaternions arithmetic geometry --- Supersingular elliptic curves --- Abelian surfaces with QM
Choose an application
"Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number P can be computed in time bounded by a fixed power of the logarithm of P. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program. The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields. The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations"-- "This book represents a major step forward from explicit class field theory, and it could be described as the start of the 'explicit Langlands program'"--
Galois modules (Algebra) --- Class field theory. --- Algebraic number theory --- Galois module structure (Algebra) --- Galois's modules (Algebra) --- Modules (Algebra) --- Arakelov invariants. --- Arakelov theory. --- Fourier coefficients. --- Galois representation. --- Galois representations. --- Green functions. --- Hecke operators. --- Jacobians. --- Langlands program. --- Las Vegas algorithm. --- Lehmer. --- Peter Bruin. --- Ramanujan's tau function. --- Ramanujan's tau-function. --- Ramanujan's tau. --- Riemann surfaces. --- Schoof's algorithm. --- Turing machines. --- algorithms. --- arithmetic geometry. --- arithmetic surfaces. --- bounding heights. --- bounds. --- coefficients. --- complex roots. --- computation. --- computing algorithms. --- computing coefficients. --- cusp forms. --- cuspidal divisor. --- eigenforms. --- finite fields. --- height functions. --- inequality. --- lattices. --- minimal polynomial. --- modular curves. --- modular forms. --- modular representation. --- modular representations. --- modular symbols. --- nonvanishing conjecture. --- p-adic methods. --- plane curves. --- polynomial time algorithm. --- polynomial time algoriths. --- polynomial time. --- polynomials. --- power series. --- probabilistic polynomial time. --- random divisors. --- residual representation. --- square root. --- square-free levels. --- tale cohomology. --- torsion divisors. --- torsion.
Listing 1 - 2 of 2 |
Sort by
|