Listing 1 - 3 of 3 |
Sort by
|
Choose an application
Diffusive motion--displacement due to the cumulative effect of irregular fluctuations--has been a fundamental concept in mathematics and physics since Einstein's work on Brownian motion. It is also relevant to understanding various aspects of quantum theory. This book explains diffusive motion and its relation to both nonrelativistic quantum theory and quantum field theory. It shows how diffusive motion concepts lead to a radical reexamination of the structure of mathematical analysis. The book's inspiration is Princeton University mathematics professor Edward Nelson's influential work in probability, functional analysis, nonstandard analysis, stochastic mechanics, and logic. The book can be used as a tutorial or reference, or read for pleasure by anyone interested in the role of mathematics in science. Because of the application of diffusive motion to quantum theory, it will interest physicists as well as mathematicians. The introductory chapter describes the interrelationships between the various themes, many of which were first brought to light by Edward Nelson. In his writing and conversation, Nelson has always emphasized and relished the human aspect of mathematical endeavor. In his intellectual world, there is no sharp boundary between the mathematical, the cultural, and the spiritual. It is fitting that the final chapter provides a mathematical perspective on musical theory, one that reveals an unexpected connection with some of the book's main themes.
Mathematical physics. --- Diffusion. --- Quantum theory. --- Quantum dynamics --- Quantum mechanics --- Quantum physics --- Physics --- Mechanics --- Thermodynamics --- Gases --- Liquids --- Separation (Technology) --- Solution (Chemistry) --- Solutions, Solid --- Matter --- Packed towers --- Semiconductor doping --- Physical mathematics --- Diffusion --- Properties --- Mathematics --- Affine space. --- Algebra. --- Axiom. --- Bell's theorem. --- Brownian motion. --- Central limit theorem. --- Classical mathematics. --- Classical mechanics. --- Clifford algebra. --- Combinatorial proof. --- Commutative property. --- Constructive quantum field theory. --- Continuum hypothesis. --- David Hilbert. --- Dimension (vector space). --- Discrete mathematics. --- Distribution (mathematics). --- Eigenfunction. --- Equation. --- Euclidean space. --- Experimental mathematics. --- Fermi–Dirac statistics. --- Feynman–Kac formula. --- First-order logic. --- Fokker–Planck equation. --- Foundations of mathematics. --- Fractal dimension. --- Gaussian process. --- Girsanov theorem. --- Gödel's incompleteness theorems. --- Hilbert space. --- Hilbert's program. --- Holomorphic function. --- Infinitesimal. --- Integer. --- Internal set theory. --- Interval (mathematics). --- Limit (mathematics). --- Mathematical induction. --- Mathematical optimization. --- Mathematical proof. --- Mathematician. --- Mathematics. --- Measurable function. --- Measure (mathematics). --- Minkowski space. --- Natural number. --- Neo-Riemannian theory. --- Non-standard analysis. --- Number theory. --- Operator algebra. --- Ornstein–Uhlenbeck process. --- Orthonormal basis. --- Perturbation theory (quantum mechanics). --- Philosophy of mathematics. --- Predicate (mathematical logic). --- Probability measure. --- Probability space. --- Probability theory. --- Probability. --- Projection (linear algebra). --- Pure mathematics. --- Pythagorean theorem. --- Quantum field theory. --- Quantum fluctuation. --- Quantum gravity. --- Quantum harmonic oscillator. --- Quantum mechanics. --- Quantum system. --- Quantum teleportation. --- Random variable. --- Real number. --- Renormalization group. --- Renormalization. --- Riemann mapping theorem. --- Riemann surface. --- Riemannian geometry. --- Riemannian manifold. --- Schrödinger equation. --- Scientific notation. --- Set (mathematics). --- Sign (mathematics). --- Sobolev inequality. --- Special relativity. --- Spectral theorem. --- Spin (physics). --- Statistical mechanics. --- Stochastic calculus. --- Stochastic differential equation. --- Tensor algebra. --- Theorem. --- Theoretical physics. --- Theory. --- Turing machine. --- Variable (mathematics). --- Von Neumann algebra. --- Wiener process. --- Wightman axioms. --- Zermelo–Fraenkel set theory.
Choose an application
This book develops arithmetic without the induction principle, working in theories that are interpretable in Raphael Robinson's theory Q. Certain inductive formulas, the bounded ones, are interpretable in Q. A mathematically strong, but logically very weak, predicative arithmetic is constructed.Originally published in 1986.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Constructive mathematics. --- Arithmetic. --- Mathematics --- Set theory --- Calculators --- Numbers, Real --- Mathematics, Constructive --- Logic, Symbolic and mathematical --- Addition. --- Adjunction (field theory). --- Age of the universe. --- Almost surely. --- Arithmetic IF. --- Atomic formula. --- Axiom. --- Axiomatic system. --- Beta function. --- Big O notation. --- Binary number. --- Binary relation. --- Brownian motion. --- Canonical form. --- Cardinality. --- Cartesian coordinate system. --- Chessboard. --- Classical mathematics. --- Closed-form expression. --- Commutative property. --- Computation. --- Conservative extension. --- Consistency. --- Contradiction. --- Deduction theorem. --- Diameter. --- Direct proof. --- Domain of discourse. --- Elementary mathematics. --- Elias M. Stein. --- Existential quantification. --- Exponential function. --- Exponentiation. --- Extension by definitions. --- Finitary. --- Finite set. --- Formula C (SCCA). --- Foundations of mathematics. --- Fundamenta Mathematicae. --- Gödel's completeness theorem. --- Herbrand's theorem. --- Impredicativity. --- Inaccessible cardinal. --- Inference. --- Interpretability. --- John Milnor. --- Logic. --- Logical connective. --- Mathematical induction. --- Mathematical logic. --- Mathematician. --- Mathematics. --- Measurable cardinal. --- Metamathematics. --- Metatheorem. --- Model theory. --- Mostowski. --- Natural number. --- Negation. --- Non-standard analysis. --- Notation. --- P-adic analysis. --- Peano axioms. --- Polynomial. --- Positional notation. --- Power of two. --- Power set. --- Primitive notion. --- Primitive recursive function. --- Principia Mathematica. --- Probability theory. --- Quantifier (logic). --- Quantity. --- Ranking (information retrieval). --- Rational number. --- Real number. --- Recursion (computer science). --- Remainder. --- Requirement. --- Robert Langlands. --- Rule of inference. --- Scientific notation. --- Sequence. --- Set theory. --- Subset. --- Theorem. --- Theory. --- Transfer principle. --- Transfinite number. --- Triviality (mathematics). --- Tuple. --- Uniqueness. --- Universal quantification. --- Variable (mathematics). --- Zermelo–Fraenkel set theory.
Choose an application
Elements of Mathematics takes readers on a fascinating tour that begins in elementary mathematics-but, as John Stillwell shows, this subject is not as elementary or straightforward as one might think. Not all topics that are part of today's elementary mathematics were always considered as such, and great mathematical advances and discoveries had to occur in order for certain subjects to become "elementary." Stillwell examines elementary mathematics from a distinctive twenty-first-century viewpoint and describes not only the beauty and scope of the discipline, but also its limits.From Gaussian integers to propositional logic, Stillwell delves into arithmetic, computation, algebra, geometry, calculus, combinatorics, probability, and logic. He discusses how each area ties into more advanced topics to build mathematics as a whole. Through a rich collection of basic principles, vivid examples, and interesting problems, Stillwell demonstrates that elementary mathematics becomes advanced with the intervention of infinity. Infinity has been observed throughout mathematical history, but the recent development of "reverse mathematics" confirms that infinity is essential for proving well-known theorems, and helps to determine the nature, contours, and borders of elementary mathematics.Elements of Mathematics gives readers, from high school students to professional mathematicians, the highlights of elementary mathematics and glimpses of the parts of math beyond its boundaries.
Mathematics --- Math --- Science --- Study and teaching (Higher) --- Abstract algebra. --- Addition. --- Algebra. --- Algebraic equation. --- Algebraic number. --- Algorithm. --- Arbitrarily large. --- Arithmetic. --- Axiom. --- Binomial coefficient. --- Bolzano–Weierstrass theorem. --- Calculation. --- Cantor's diagonal argument. --- Church–Turing thesis. --- Closure (mathematics). --- Coefficient. --- Combination. --- Combinatorics. --- Commutative property. --- Complex number. --- Computable number. --- Computation. --- Constructible number. --- Continuous function (set theory). --- Continuous function. --- Continuum hypothesis. --- Dedekind cut. --- Dirichlet's approximation theorem. --- Divisibility rule. --- Elementary function. --- Elementary mathematics. --- Equation. --- Euclidean division. --- Euclidean geometry. --- Exponentiation. --- Extended Euclidean algorithm. --- Factorization. --- Fibonacci number. --- Floor and ceiling functions. --- Fundamental theorem of algebra. --- Fundamental theorem. --- Gaussian integer. --- Geometric series. --- Geometry. --- Gödel's incompleteness theorems. --- Halting problem. --- Infimum and supremum. --- Integer factorization. --- Integer. --- Least-upper-bound property. --- Line segment. --- Linear algebra. --- Logic. --- Mathematical induction. --- Mathematician. --- Mathematics. --- Method of exhaustion. --- Modular arithmetic. --- Natural number. --- Non-Euclidean geometry. --- Number theory. --- Pascal's triangle. --- Peano axioms. --- Pigeonhole principle. --- Polynomial. --- Predicate logic. --- Prime factor. --- Prime number. --- Probability theory. --- Probability. --- Projective line. --- Pure mathematics. --- Pythagorean theorem. --- Ramsey theory. --- Ramsey's theorem. --- Rational number. --- Real number. --- Real projective line. --- Rectangle. --- Reverse mathematics. --- Robinson arithmetic. --- Scientific notation. --- Series (mathematics). --- Set theory. --- Sign (mathematics). --- Significant figures. --- Special case. --- Sperner's lemma. --- Subset. --- Successor function. --- Summation. --- Symbolic computation. --- Theorem. --- Time complexity. --- Turing machine. --- Variable (mathematics). --- Vector space. --- Word problem (mathematics). --- Word problem for groups. --- Zermelo–Fraenkel set theory.
Listing 1 - 3 of 3 |
Sort by
|