Narrow your search

Library

FARO (4)

KU Leuven (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULB (4)

ULiège (4)

VIVES (4)

More...

Resource type

book (12)


Language

English (12)


Year
From To Submit

2022 (3)

2021 (3)

2020 (3)

2019 (3)

Listing 1 - 10 of 12 << page
of 2
>>
Sort by

Book
Mineralogical Crystallography
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Crystallography remains, for mineralogy, one of the main sources of information on natural crystalline substances. A description of mineral species shape is carried out according to the principles of geometric crystallography; the crystal structure of minerals is determined using X-ray crystallography techniques, and physical crystallography approaches allow one to evaluate various properties of minerals, etc. However, the reverse comparison should not be forgotten as well: the crystallography science, in its current form, was born in the course of mineralogical research, long before preparative chemistry received such extensive development. It is worth noting that, even today, investigations of crystallographic characteristics of minerals regularly open up new horizons in materials science, because the possibilities of nature (fascinating chemical diversity; great variation of thermodynamic parameters; and, of course, almost endless processing time) are still not available for reproduction in any of the world's laboratories. This Special Issue is devoted to mineralogical crystallography, the oldest branch of crystallographic science, and aims to combine important surveys covering topics indicated in the keywords below.

Keywords

Research & information: general --- galenobismutite --- high pressure --- single-crystal X-ray synchrotron diffraction --- equation of state --- calcium ferrite structure type --- lone electron pair --- vaterite --- calcium carbonate --- polymorph --- precipitation --- synthesis --- carbonation --- pathogen crystallization --- biomimetic synthesis --- renal stone --- calcium oxalate --- apatite --- brushite --- struvite --- octocalcium phosphate --- whitlockite --- Escherichia coli --- Klebsiella pneumoniae --- Pseudomonas aeruginosa --- Staphylococcus aureus --- uranyl --- selenite --- selenate --- crystal structure --- topology --- structural complexity --- demesmaekerite --- guillemenite --- haynesite --- coesite --- high-temperature Raman --- FTIR spectrum --- single crystal structure --- isobaric Grüneisen parameters --- OH-stretching modes --- strontium oxalate --- solid solutions --- ionic substitutions --- weddellite --- whewellite --- X-ray powder diffraction --- scanning electron microscopy --- EDX spectroscopy --- hydroxy-hydrate --- sulfate --- cesium --- schoepite --- krasnoshteinite --- zeolite-like borate --- hydrous aluminum chloroborate --- new mineral --- microporous crystalline material --- evaporitic salt rock --- Verkhnekamskoe potassium salt deposit --- Perm Krai --- anatomy --- Cactaceae --- oxalate --- silica --- stem --- stanfieldite --- phosphate --- merrillite --- meteorite --- pallasite --- mesosiderite --- luminophore --- bioceramics --- powder diffraction --- Raman spectroscopy --- Kamchatka --- hot springs --- pyrite --- complexity of crystal habits --- Mars --- mineral --- crystallography --- crystal chemistry --- X-ray diffraction --- crystal growth --- mineral evolution


Book
Crystal Chemistry of Zinc, Cadmium and Mercury
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a printed edition of the Special Issue Crystal Chemistry of Zinc, Cadmium and Mercury that was published in Crystals


Book
Advanced Materials and Technologies for Fuel Cells
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fuel cells are expected to play a relevant role in the transition towards a sustainable-energy-driven world. Although this type of electrochemical system was discovered a long time ago, only in recent years has global energy awareness, together with newly developed materials and available technologies, made such key advances in relation to fuel cell potential and its deployment. It is now unquestionable that fuel cells are recognized, alongside their possibility to work in the reverse mode, as the hub of the new energy deal. Now the questions are, why are they not yet ready to be used, despite the strong economic support given from the society? What prevents them from being entered into the hydrogen energy scenario in which renewable sources will provide energy when it is not readily available? How much are researchers involved in this urgent step towards change? This book gives a clear answer, engaging with some of the open issues that explain the delay of fuel cell deployment and, at the same time, it opens a window that shows how wide and attractive the opportunities offered by this technology are. Papers collected here are not only specialist-oriented but also offer a clear landscape to curious readers and show how challenging the road to the future is.


Book
Advanced Materials and Technologies for Fuel Cells
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fuel cells are expected to play a relevant role in the transition towards a sustainable-energy-driven world. Although this type of electrochemical system was discovered a long time ago, only in recent years has global energy awareness, together with newly developed materials and available technologies, made such key advances in relation to fuel cell potential and its deployment. It is now unquestionable that fuel cells are recognized, alongside their possibility to work in the reverse mode, as the hub of the new energy deal. Now the questions are, why are they not yet ready to be used, despite the strong economic support given from the society? What prevents them from being entered into the hydrogen energy scenario in which renewable sources will provide energy when it is not readily available? How much are researchers involved in this urgent step towards change? This book gives a clear answer, engaging with some of the open issues that explain the delay of fuel cell deployment and, at the same time, it opens a window that shows how wide and attractive the opportunities offered by this technology are. Papers collected here are not only specialist-oriented but also offer a clear landscape to curious readers and show how challenging the road to the future is.


Book
Crystal Chemistry of Zinc, Cadmium and Mercury
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a printed edition of the Special Issue Crystal Chemistry of Zinc, Cadmium and Mercury that was published in Crystals


Book
Mineralogical Crystallography
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Crystallography remains, for mineralogy, one of the main sources of information on natural crystalline substances. A description of mineral species shape is carried out according to the principles of geometric crystallography; the crystal structure of minerals is determined using X-ray crystallography techniques, and physical crystallography approaches allow one to evaluate various properties of minerals, etc. However, the reverse comparison should not be forgotten as well: the crystallography science, in its current form, was born in the course of mineralogical research, long before preparative chemistry received such extensive development. It is worth noting that, even today, investigations of crystallographic characteristics of minerals regularly open up new horizons in materials science, because the possibilities of nature (fascinating chemical diversity; great variation of thermodynamic parameters; and, of course, almost endless processing time) are still not available for reproduction in any of the world's laboratories. This Special Issue is devoted to mineralogical crystallography, the oldest branch of crystallographic science, and aims to combine important surveys covering topics indicated in the keywords below.

Keywords

galenobismutite --- high pressure --- single-crystal X-ray synchrotron diffraction --- equation of state --- calcium ferrite structure type --- lone electron pair --- vaterite --- calcium carbonate --- polymorph --- precipitation --- synthesis --- carbonation --- pathogen crystallization --- biomimetic synthesis --- renal stone --- calcium oxalate --- apatite --- brushite --- struvite --- octocalcium phosphate --- whitlockite --- Escherichia coli --- Klebsiella pneumoniae --- Pseudomonas aeruginosa --- Staphylococcus aureus --- uranyl --- selenite --- selenate --- crystal structure --- topology --- structural complexity --- demesmaekerite --- guillemenite --- haynesite --- coesite --- high-temperature Raman --- FTIR spectrum --- single crystal structure --- isobaric Grüneisen parameters --- OH-stretching modes --- strontium oxalate --- solid solutions --- ionic substitutions --- weddellite --- whewellite --- X-ray powder diffraction --- scanning electron microscopy --- EDX spectroscopy --- hydroxy-hydrate --- sulfate --- cesium --- schoepite --- krasnoshteinite --- zeolite-like borate --- hydrous aluminum chloroborate --- new mineral --- microporous crystalline material --- evaporitic salt rock --- Verkhnekamskoe potassium salt deposit --- Perm Krai --- anatomy --- Cactaceae --- oxalate --- silica --- stem --- stanfieldite --- phosphate --- merrillite --- meteorite --- pallasite --- mesosiderite --- luminophore --- bioceramics --- powder diffraction --- Raman spectroscopy --- Kamchatka --- hot springs --- pyrite --- complexity of crystal habits --- Mars --- mineral --- crystallography --- crystal chemistry --- X-ray diffraction --- crystal growth --- mineral evolution


Book
Mineralogical Crystallography
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Crystallography remains, for mineralogy, one of the main sources of information on natural crystalline substances. A description of mineral species shape is carried out according to the principles of geometric crystallography; the crystal structure of minerals is determined using X-ray crystallography techniques, and physical crystallography approaches allow one to evaluate various properties of minerals, etc. However, the reverse comparison should not be forgotten as well: the crystallography science, in its current form, was born in the course of mineralogical research, long before preparative chemistry received such extensive development. It is worth noting that, even today, investigations of crystallographic characteristics of minerals regularly open up new horizons in materials science, because the possibilities of nature (fascinating chemical diversity; great variation of thermodynamic parameters; and, of course, almost endless processing time) are still not available for reproduction in any of the world's laboratories. This Special Issue is devoted to mineralogical crystallography, the oldest branch of crystallographic science, and aims to combine important surveys covering topics indicated in the keywords below.

Keywords

Research & information: general --- galenobismutite --- high pressure --- single-crystal X-ray synchrotron diffraction --- equation of state --- calcium ferrite structure type --- lone electron pair --- vaterite --- calcium carbonate --- polymorph --- precipitation --- synthesis --- carbonation --- pathogen crystallization --- biomimetic synthesis --- renal stone --- calcium oxalate --- apatite --- brushite --- struvite --- octocalcium phosphate --- whitlockite --- Escherichia coli --- Klebsiella pneumoniae --- Pseudomonas aeruginosa --- Staphylococcus aureus --- uranyl --- selenite --- selenate --- crystal structure --- topology --- structural complexity --- demesmaekerite --- guillemenite --- haynesite --- coesite --- high-temperature Raman --- FTIR spectrum --- single crystal structure --- isobaric Grüneisen parameters --- OH-stretching modes --- strontium oxalate --- solid solutions --- ionic substitutions --- weddellite --- whewellite --- X-ray powder diffraction --- scanning electron microscopy --- EDX spectroscopy --- hydroxy-hydrate --- sulfate --- cesium --- schoepite --- krasnoshteinite --- zeolite-like borate --- hydrous aluminum chloroborate --- new mineral --- microporous crystalline material --- evaporitic salt rock --- Verkhnekamskoe potassium salt deposit --- Perm Krai --- anatomy --- Cactaceae --- oxalate --- silica --- stem --- stanfieldite --- phosphate --- merrillite --- meteorite --- pallasite --- mesosiderite --- luminophore --- bioceramics --- powder diffraction --- Raman spectroscopy --- Kamchatka --- hot springs --- pyrite --- complexity of crystal habits --- Mars --- mineral --- crystallography --- crystal chemistry --- X-ray diffraction --- crystal growth --- mineral evolution --- galenobismutite --- high pressure --- single-crystal X-ray synchrotron diffraction --- equation of state --- calcium ferrite structure type --- lone electron pair --- vaterite --- calcium carbonate --- polymorph --- precipitation --- synthesis --- carbonation --- pathogen crystallization --- biomimetic synthesis --- renal stone --- calcium oxalate --- apatite --- brushite --- struvite --- octocalcium phosphate --- whitlockite --- Escherichia coli --- Klebsiella pneumoniae --- Pseudomonas aeruginosa --- Staphylococcus aureus --- uranyl --- selenite --- selenate --- crystal structure --- topology --- structural complexity --- demesmaekerite --- guillemenite --- haynesite --- coesite --- high-temperature Raman --- FTIR spectrum --- single crystal structure --- isobaric Grüneisen parameters --- OH-stretching modes --- strontium oxalate --- solid solutions --- ionic substitutions --- weddellite --- whewellite --- X-ray powder diffraction --- scanning electron microscopy --- EDX spectroscopy --- hydroxy-hydrate --- sulfate --- cesium --- schoepite --- krasnoshteinite --- zeolite-like borate --- hydrous aluminum chloroborate --- new mineral --- microporous crystalline material --- evaporitic salt rock --- Verkhnekamskoe potassium salt deposit --- Perm Krai --- anatomy --- Cactaceae --- oxalate --- silica --- stem --- stanfieldite --- phosphate --- merrillite --- meteorite --- pallasite --- mesosiderite --- luminophore --- bioceramics --- powder diffraction --- Raman spectroscopy --- Kamchatka --- hot springs --- pyrite --- complexity of crystal habits --- Mars --- mineral --- crystallography --- crystal chemistry --- X-ray diffraction --- crystal growth --- mineral evolution


Book
Advanced Materials and Technologies for Fuel Cells
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fuel cells are expected to play a relevant role in the transition towards a sustainable-energy-driven world. Although this type of electrochemical system was discovered a long time ago, only in recent years has global energy awareness, together with newly developed materials and available technologies, made such key advances in relation to fuel cell potential and its deployment. It is now unquestionable that fuel cells are recognized, alongside their possibility to work in the reverse mode, as the hub of the new energy deal. Now the questions are, why are they not yet ready to be used, despite the strong economic support given from the society? What prevents them from being entered into the hydrogen energy scenario in which renewable sources will provide energy when it is not readily available? How much are researchers involved in this urgent step towards change? This book gives a clear answer, engaging with some of the open issues that explain the delay of fuel cell deployment and, at the same time, it opens a window that shows how wide and attractive the opportunities offered by this technology are. Papers collected here are not only specialist-oriented but also offer a clear landscape to curious readers and show how challenging the road to the future is.

Keywords

Research & information: general --- Technology: general issues --- polymer electrolyte fuel cell --- cyclic current profile --- transient behavior --- pressure drop --- Ohmic resistance --- solid oxide fuel cells (SOFCs) --- ionic conductivity --- Raman spectroscopy --- powder X-ray diffraction --- microbial fuel cell --- low-cost ceramics --- separator --- membrane --- porosity --- pore size --- water absorption --- mercury intrusion --- raman spectroscopy --- powder x-ray diffraction --- doped ceria --- solid oxides fuel cells --- Sm-doped ceria --- high pressure X-ray powder diffraction --- diamond anvil cell --- equation of state --- Rietveld refinement --- SOFC --- reliability --- contamination --- salt --- oxygen starvation --- concentration polarization --- fuel cell application --- microfluidic fuel cell --- power supply --- soft drinks --- hydrogen production --- alkaline water electrolysis --- two-phases flow --- CFD --- two-phase process --- BSCF --- SOEC --- rSOC --- anodic overpotential --- impedance spectroscopy --- sealants --- glass-ceramic --- joining --- CH4 internal reforming --- solid oxide fuel cell --- 2D local control --- cell design optimization --- active site degradation --- tape casting process --- open circuit voltage --- activation energy --- power density --- IT-SOFC --- PEM fuel cell --- useful water --- hydrogen consumption scenarios --- modified fuel utilization --- polymer electrolyte fuel cell --- cyclic current profile --- transient behavior --- pressure drop --- Ohmic resistance --- solid oxide fuel cells (SOFCs) --- ionic conductivity --- Raman spectroscopy --- powder X-ray diffraction --- microbial fuel cell --- low-cost ceramics --- separator --- membrane --- porosity --- pore size --- water absorption --- mercury intrusion --- raman spectroscopy --- powder x-ray diffraction --- doped ceria --- solid oxides fuel cells --- Sm-doped ceria --- high pressure X-ray powder diffraction --- diamond anvil cell --- equation of state --- Rietveld refinement --- SOFC --- reliability --- contamination --- salt --- oxygen starvation --- concentration polarization --- fuel cell application --- microfluidic fuel cell --- power supply --- soft drinks --- hydrogen production --- alkaline water electrolysis --- two-phases flow --- CFD --- two-phase process --- BSCF --- SOEC --- rSOC --- anodic overpotential --- impedance spectroscopy --- sealants --- glass-ceramic --- joining --- CH4 internal reforming --- solid oxide fuel cell --- 2D local control --- cell design optimization --- active site degradation --- tape casting process --- open circuit voltage --- activation energy --- power density --- IT-SOFC --- PEM fuel cell --- useful water --- hydrogen consumption scenarios --- modified fuel utilization


Book
Crystal Chemistry of Zinc, Cadmium and Mercury
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a printed edition of the Special Issue Crystal Chemistry of Zinc, Cadmium and Mercury that was published in Crystals

Keywords

hydroxyl group --- bis(1 --- quinaldinic acid --- solidification --- xanthate --- wurtzite --- mechanical --- EBSD --- oxo-centred polyhedra --- coordination polymer --- precipitation --- 5-thiophenedicarboxylic acid --- defects in semiconductors --- zinc(II) complexes --- precursor --- nanometer zinc oxide --- zinc --- thermal analysis --- transmission electron microscopy (TEM) --- crystal chemistry --- pyridine --- dithiocarbamate --- high magnetic field --- index of X-ray powder diffraction data --- 1 --- hydrogen bonding --- 2 --- luminescence --- cadmium --- interface structure --- 3-bis(1 --- mercury --- aqueous solution method --- crystallography --- growth mechanism --- PL spectra --- phonon dispersion --- coordination polymers --- 4-triazol-1-yl)propane --- CdZnTe --- oxochromates(VI) --- Ni3Sn structure type --- structural chemistry --- dithiophosphates --- traveling heater method --- ZnO nanorod arrays --- copper amalgams --- dental amalgams --- unusual coordination modes --- CdS --- zinc-rich crystal --- 4-triazol-1-yl)methane --- elastic --- crystal structure --- phonon --- bitopic ligand --- room-temperature solid state reaction --- zinc complex --- characterization --- crystal engineering --- ZnS --- hydrogen bond --- hydroxyl group --- bis(1 --- quinaldinic acid --- solidification --- xanthate --- wurtzite --- mechanical --- EBSD --- oxo-centred polyhedra --- coordination polymer --- precipitation --- 5-thiophenedicarboxylic acid --- defects in semiconductors --- zinc(II) complexes --- precursor --- nanometer zinc oxide --- zinc --- thermal analysis --- transmission electron microscopy (TEM) --- crystal chemistry --- pyridine --- dithiocarbamate --- high magnetic field --- index of X-ray powder diffraction data --- 1 --- hydrogen bonding --- 2 --- luminescence --- cadmium --- interface structure --- 3-bis(1 --- mercury --- aqueous solution method --- crystallography --- growth mechanism --- PL spectra --- phonon dispersion --- coordination polymers --- 4-triazol-1-yl)propane --- CdZnTe --- oxochromates(VI) --- Ni3Sn structure type --- structural chemistry --- dithiophosphates --- traveling heater method --- ZnO nanorod arrays --- copper amalgams --- dental amalgams --- unusual coordination modes --- CdS --- zinc-rich crystal --- 4-triazol-1-yl)methane --- elastic --- crystal structure --- phonon --- bitopic ligand --- room-temperature solid state reaction --- zinc complex --- characterization --- crystal engineering --- ZnS --- hydrogen bond


Book
X-ray Diffraction of Functional Materials
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Demand for advanced X-ray scattering techniques has increased tremendously in recent years with the development of new functional materials. These characterizations have a huge impact on evaluating the microstructure and structure–property relation in functional materials. Thanks to its non-destructive character and adaptability to various environments, the X-ray is a powerful tool, being irreplaceable for novel in situ and operando studies. This book is dedicated to the latest advances in X-ray diffraction using both synchrotron radiation as well as laboratory sources for analyzing the microstructure and morphology in a broad range (organic, inorganic, hybrid, etc.) of functional materials.

Keywords

Technology: general issues --- History of engineering & technology --- Materials science --- lead-free ceramic --- sol–gel process --- barium zirconate titanate --- dielectric property --- conjugated polymer and blends --- in situ GIXD --- additive --- structure --- strain --- X-ray diffraction --- piezoelectric properties --- lanthanum-modified lead zirconate titanate (PLZT) --- zeolite-W --- cation form --- synchrotron X-ray diffraction --- Rietveld refinement --- high-pressure --- smectite --- bulk moduli --- anhydrous and hydrous environments --- synchrotron X-ray powder diffraction --- pressure-transmitting media --- metallic composites --- Ni --- Ni-W alloys --- silver-exchanged natrolite --- pressure-induced insertion --- high energy-density materials --- high pressure and temperature --- Raman spectroscopy --- ammonium azide --- polynitrogen compounds --- superalloys --- low-angle boundaries --- X-ray topography --- turbine blades --- crystal growth --- nano-perovskite (CaTiO3) --- Young’s modulus --- ultrasonic-pulse echo --- planar density --- residual stress --- laser cavitation peening --- pulse laser --- wedge-shaped amphiphile --- double gyroid phase --- grazing-incidence X-ray scattering --- environmental atomic force microscopy --- vapor annealing --- Williamson-Hall (W-H) --- uniform stress deformation model (USDM) --- hydroxyapatite --- ultrasonic pulse-echo --- thermoplastic polyurethane ureas --- shape memory materials --- synchrotron SAXS/WAXS --- polymer deformation --- lamellar morphology --- poly-ε-caprolactone --- poly(1,4-butylene adipate) --- lead-free ceramic --- sol–gel process --- barium zirconate titanate --- dielectric property --- conjugated polymer and blends --- in situ GIXD --- additive --- structure --- strain --- X-ray diffraction --- piezoelectric properties --- lanthanum-modified lead zirconate titanate (PLZT) --- zeolite-W --- cation form --- synchrotron X-ray diffraction --- Rietveld refinement --- high-pressure --- smectite --- bulk moduli --- anhydrous and hydrous environments --- synchrotron X-ray powder diffraction --- pressure-transmitting media --- metallic composites --- Ni --- Ni-W alloys --- silver-exchanged natrolite --- pressure-induced insertion --- high energy-density materials --- high pressure and temperature --- Raman spectroscopy --- ammonium azide --- polynitrogen compounds --- superalloys --- low-angle boundaries --- X-ray topography --- turbine blades --- crystal growth --- nano-perovskite (CaTiO3) --- Young’s modulus --- ultrasonic-pulse echo --- planar density --- residual stress --- laser cavitation peening --- pulse laser --- wedge-shaped amphiphile --- double gyroid phase --- grazing-incidence X-ray scattering --- environmental atomic force microscopy --- vapor annealing --- Williamson-Hall (W-H) --- uniform stress deformation model (USDM) --- hydroxyapatite --- ultrasonic pulse-echo --- thermoplastic polyurethane ureas --- shape memory materials --- synchrotron SAXS/WAXS --- polymer deformation --- lamellar morphology --- poly-ε-caprolactone --- poly(1,4-butylene adipate)

Listing 1 - 10 of 12 << page
of 2
>>
Sort by