Narrow your search

Library

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULiège (3)

VIVES (3)

FARO (2)

Vlaams Parlement (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2022 (1)

2020 (3)

1990 (1)

Listing 1 - 5 of 5
Sort by

Book
Working Fluid Selection for Organic Rankine Cycle and Other Related Cycles
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The world’s energy demand is still growing, partly due to the rising population, partly to increasing personal needs. This growing demand has to be met without increasing (or preferably, by decreasing) the environmental impact. One of the ways to do so is the use of existing low-temperature heat sources for producing electricity, such as using power plants based on the organic Rankine cycle (ORC) . In ORC power plants, instead of the traditional steam, the vapor of organic materials (with low boiling points) is used to turn heat to work and subsequently to electricity. These units are usually less efficient than steam-based plants; therefore, they should be optimized to be technically and economically feasible. The selection of working fluid for a given heat source is crucial; a particular working fluid might be suitable to harvest energy from a 90 ℃ geothermal well but would show disappointing performance for well with a 80 ℃ head temperature. The ORC working fluid for a given heat source is usually selected from a handful of existing fluids by trial-and-error methods; in this collection, we demonstrate a more systematic method based on physical and chemical criteria.


Book
Working Fluid Selection for Organic Rankine Cycle and Other Related Cycles
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The world’s energy demand is still growing, partly due to the rising population, partly to increasing personal needs. This growing demand has to be met without increasing (or preferably, by decreasing) the environmental impact. One of the ways to do so is the use of existing low-temperature heat sources for producing electricity, such as using power plants based on the organic Rankine cycle (ORC) . In ORC power plants, instead of the traditional steam, the vapor of organic materials (with low boiling points) is used to turn heat to work and subsequently to electricity. These units are usually less efficient than steam-based plants; therefore, they should be optimized to be technically and economically feasible. The selection of working fluid for a given heat source is crucial; a particular working fluid might be suitable to harvest energy from a 90 ℃ geothermal well but would show disappointing performance for well with a 80 ℃ head temperature. The ORC working fluid for a given heat source is usually selected from a handful of existing fluids by trial-and-error methods; in this collection, we demonstrate a more systematic method based on physical and chemical criteria.


Book
Working Fluid Selection for Organic Rankine Cycle and Other Related Cycles
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The world’s energy demand is still growing, partly due to the rising population, partly to increasing personal needs. This growing demand has to be met without increasing (or preferably, by decreasing) the environmental impact. One of the ways to do so is the use of existing low-temperature heat sources for producing electricity, such as using power plants based on the organic Rankine cycle (ORC) . In ORC power plants, instead of the traditional steam, the vapor of organic materials (with low boiling points) is used to turn heat to work and subsequently to electricity. These units are usually less efficient than steam-based plants; therefore, they should be optimized to be technically and economically feasible. The selection of working fluid for a given heat source is crucial; a particular working fluid might be suitable to harvest energy from a 90 ℃ geothermal well but would show disappointing performance for well with a 80 ℃ head temperature. The ORC working fluid for a given heat source is usually selected from a handful of existing fluids by trial-and-error methods; in this collection, we demonstrate a more systematic method based on physical and chemical criteria.

Keywords

History of engineering & technology --- adiabatic expansion --- isentropic expansion --- T-s diagram --- working fluid classification --- optimization --- single-screw expander --- vapor–liquid two-phase expansion --- thermal efficiency --- net work output --- heat exchange load of condenser --- cis-butene --- HFO-1234ze(E) --- ORC working fluids --- temperature–entropy saturation curve --- saturation properties --- wet and dry fluids --- ideal-gas heat capacity --- Rankine cycle --- ORC --- biomass --- fluid mixtures --- hydrocarbons --- working fluid --- selection method --- volumetric expander --- thermodynamic analysis --- wet zeotropic mixture --- single screw expander --- organic Rankine cycle --- R441A --- R436B --- R432A --- T–s diagram --- molecular degree of freedom --- adiabatic expansion --- isentropic expansion --- T-s diagram --- working fluid classification --- optimization --- single-screw expander --- vapor–liquid two-phase expansion --- thermal efficiency --- net work output --- heat exchange load of condenser --- cis-butene --- HFO-1234ze(E) --- ORC working fluids --- temperature–entropy saturation curve --- saturation properties --- wet and dry fluids --- ideal-gas heat capacity --- Rankine cycle --- ORC --- biomass --- fluid mixtures --- hydrocarbons --- working fluid --- selection method --- volumetric expander --- thermodynamic analysis --- wet zeotropic mixture --- single screw expander --- organic Rankine cycle --- R441A --- R436B --- R432A --- T–s diagram --- molecular degree of freedom


Book
Maxwell's demon
Authors: ---
ISBN: 1400861527 0691605467 9781400861521 0691087261 069108727X 9780691605463 9780691087269 0691087261 9780691087276 069108727X 0691634432 Year: 1990 Publisher: Princeton, New Jersey

Loading...
Export citation

Choose an application

Bookmark

Abstract

About 120 years ago, James Clerk Maxwell introduced his now legendary hypothetical "demon" as a challenge to the integrity of the second law of thermodynamics. Fascination with the demon persisted throughout the development of statistical and quantum physics, information theory, and computer science--and linkages have been established between Maxwell's demon and each of these disciplines. The demon's seductive quality makes it appealing to physical scientists, engineers, computer scientists, biologists, psychologists, and historians and philosophers of science. Until now its important source material has been scattered throughout diverse journals.This book brings under one cover twenty-five reprints, including seminal works by Maxwell and William Thomson; historical reviews by Martin Klein, Edward Daub, and Peter Heimann; information theoretic contributions by Leo Szilard, Leon Brillouin, Dennis Gabor, and Jerome Rothstein; and innovations by Rolf Landauer and Charles Bennett illustrating linkages with the limits of computation. An introductory chapter summarizes the demon's life, from Maxwell's illustration of the second law's statistical nature to the most recent "exorcism" of the demon based on a need periodically to erase its memory. An annotated chronological bibliography is included.Originally published in 1990.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Thermodynamics. --- Chemistry, Physical and theoretical --- Dynamics --- Mechanics --- Physics --- Heat --- Heat-engines --- Quantum theory --- Maxwell's demon. --- Adiabatic process. --- Automaton. --- Available energy (particle collision). --- Billiard-ball computer. --- Black hole information paradox. --- Black hole thermodynamics. --- Black-body radiation. --- Boltzmann's entropy formula. --- Boyle's law. --- Calculation. --- Carnot's theorem (thermodynamics). --- Catalysis. --- Chaos theory. --- Computation. --- Copying. --- Creation and annihilation operators. --- Digital physics. --- Dissipation. --- Distribution law. --- Domain wall. --- EPR paradox. --- Energy level. --- Entropy of mixing. --- Entropy. --- Exchange interaction. --- Expectation value (quantum mechanics). --- Extrapolation. --- Fair coin. --- Fermi–Dirac statistics. --- Gibbs free energy. --- Gibbs paradox. --- Guessing. --- Halting problem. --- Hamiltonian mechanics. --- Heat engine. --- Heat. --- Helmholtz free energy. --- Ideal gas. --- Idealization. --- Information theory. --- Instant. --- Internal energy. --- Irreversible process. --- James Prescott Joule. --- Johnson–Nyquist noise. --- Kinetic theory of gases. --- Laws of thermodynamics. --- Least squares. --- Loschmidt's paradox. --- Ludwig Boltzmann. --- Maxwell–Boltzmann distribution. --- Mean free path. --- Measurement. --- Mechanical equivalent of heat. --- Microscopic reversibility. --- Molecule. --- Negative temperature. --- Negentropy. --- Newton's law of universal gravitation. --- Nitrous oxide. --- Non-equilibrium thermodynamics. --- Old quantum theory. --- Particle in a box. --- Perpetual motion. --- Photon. --- Probability. --- Quantity. --- Quantum limit. --- Quantum mechanics. --- Rectangular potential barrier. --- Result. --- Reversible computing. --- Reversible process (thermodynamics). --- Richard Feynman. --- Rolf Landauer. --- Rudolf Clausius. --- Scattering. --- Schrödinger equation. --- Second law of thermodynamics. --- Self-information. --- Spontaneous process. --- Standard state. --- Statistical mechanics. --- Superselection. --- Temperature. --- Theory of heat. --- Theory. --- Thermally isolated system. --- Thermodynamic equilibrium. --- Thermodynamic system. --- Thought experiment. --- Turing machine. --- Ultimate fate of the universe. --- Uncertainty principle. --- Unitarity (physics). --- Van der Waals force. --- Wave function collapse. --- Work output.


Book
Finite-Time Thermodynamics
Authors: --- ---
ISBN: 3036549501 3036549498 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The theory around the concept of finite time describes how processes of any nature can be optimized in situations when their rate is required to be non-negligible, i.e., they must come to completion in a finite time. What the theory makes explicit is “the cost of haste”. Intuitively, it is quite obvious that you drive your car differently if you want to reach your destination as quickly as possible as opposed to the case when you are running out of gas. Finite-time thermodynamics quantifies such opposing requirements and may provide the optimal control to achieve the best compromise. The theory was initially developed for heat engines (steam, Otto, Stirling, a.o.) and for refrigerators, but it has by now evolved into essentially all areas of dynamic systems from the most abstract ones to the most practical ones. The present collection shows some fascinating current examples.

Keywords

Economics, finance, business & management --- macroentropy --- microentropy --- endoreversible engine --- reversible computing --- Landauer’s principle --- piston motion optimization --- endoreversible thermodynamics --- stirling engine --- irreversibility --- power --- efficiency --- optimization --- generalized radiative heat transfer law --- optimal motion path --- maximum work output --- elimination method --- finite time thermodynamics --- thermodynamics --- economics --- optimal processes --- n/a --- averaged --- heat transfer --- cyclic mode --- simulation --- modeling --- reconstruction --- nonequilibrium thermodynamics --- entropy production --- contact temperature --- quantum thermodynamics --- maximum power --- shortcut to adiabaticity --- quantum friction --- Otto cycle --- quantum engine --- quantum refrigerator --- finite-time thermodynamics --- sulfuric acid decomposition --- tubular plug-flow reactor --- entropy generation rate --- SO2 yield --- multi-objective optimization --- optimal control --- thermodynamic cycles --- thermodynamic length --- hydrogen atom --- nano-size engines --- a-thermal cycle --- heat engines --- cooling --- very long timescales --- slow time --- ideal gas law --- new and modified variables --- Silicon–Germanium alloys --- minimum of thermal conductivity --- efficiency of thermoelectric systems --- minimal energy dissipation --- radiative energy transfer --- radiative entropy transfer --- two-stream grey atmosphere --- energy flux density --- entropy flux density --- generalized winds --- conservatively perturbed equilibrium --- extreme value --- momentary equilibrium --- information geometry of thermodynamics --- thermodynamic curvature --- critical phenomena --- binary fluids --- van der Waals equation --- quantum heat engine --- carnot cycle --- otto cycle --- multiobjective optimization --- Pareto front --- stability --- maximum power regime --- entropy behavior --- biophysics --- biochemistry --- dynamical systems --- diversity --- complexity --- path information --- calorimetry --- entropy flow --- biological communities --- reacting systems --- Landauer's principle --- Silicon-Germanium alloys

Listing 1 - 5 of 5
Sort by