Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms.
Technology: general issues --- global optimization --- cuckoo search algorithm --- Q-learning --- mutation --- self-adaptive step size --- evolutionary computation --- playtesting --- game feature --- game simulation --- game trees --- playtesting metric --- validation --- Pareto optimality --- h-index --- ranking --- dominance --- Pareto-front --- multi-indicators --- multi-metric --- multi-resources --- citation --- universities ranking --- swarm intelligence --- simulated annealing --- krill herd --- particle swarm optimization --- quantum --- elephant herding optimization --- engineering optimization --- metaheuristic --- constrained optimization --- multi-objective optimization --- single objective optimization --- differential evolution --- success-history --- premature convergence --- turning-based mutation --- opposition-based learning --- ant colony optimization --- opposite path --- traveling salesman problems --- whale optimization algorithm --- WOA --- binary whale optimization algorithm --- bWOA-S --- bWOA-V --- feature selection --- classification --- dimensionality reduction --- menu planning problem --- evolutionary algorithm --- decomposition-based multi-objective optimisation --- memetic algorithm --- iterated local search --- diversity preservation --- single-objective optimization --- knapsack problem --- travelling salesman problem --- seed schedule --- many-objective optimization --- fuzzing --- bug detection --- path discovery --- evolutionary algorithms (EAs) --- coevolution --- dynamic learning --- performance indicators --- magnetotelluric --- one-dimensional inversions --- geoelectric model --- optimization problem --- multi-task optimization --- multi-task evolutionary computation --- knowledge transfer --- assortative mating --- unified search space --- quantum computing --- grey wolf optimizer --- 0-1 knapsack problem --- green shop scheduling --- fuzzy hybrid flow shop scheduling --- discrete artificial bee colony algorithm --- minimize makespan --- minimize total energy consumption --- global optimization --- cuckoo search algorithm --- Q-learning --- mutation --- self-adaptive step size --- evolutionary computation --- playtesting --- game feature --- game simulation --- game trees --- playtesting metric --- validation --- Pareto optimality --- h-index --- ranking --- dominance --- Pareto-front --- multi-indicators --- multi-metric --- multi-resources --- citation --- universities ranking --- swarm intelligence --- simulated annealing --- krill herd --- particle swarm optimization --- quantum --- elephant herding optimization --- engineering optimization --- metaheuristic --- constrained optimization --- multi-objective optimization --- single objective optimization --- differential evolution --- success-history --- premature convergence --- turning-based mutation --- opposition-based learning --- ant colony optimization --- opposite path --- traveling salesman problems --- whale optimization algorithm --- WOA --- binary whale optimization algorithm --- bWOA-S --- bWOA-V --- feature selection --- classification --- dimensionality reduction --- menu planning problem --- evolutionary algorithm --- decomposition-based multi-objective optimisation --- memetic algorithm --- iterated local search --- diversity preservation --- single-objective optimization --- knapsack problem --- travelling salesman problem --- seed schedule --- many-objective optimization --- fuzzing --- bug detection --- path discovery --- evolutionary algorithms (EAs) --- coevolution --- dynamic learning --- performance indicators --- magnetotelluric --- one-dimensional inversions --- geoelectric model --- optimization problem --- multi-task optimization --- multi-task evolutionary computation --- knowledge transfer --- assortative mating --- unified search space --- quantum computing --- grey wolf optimizer --- 0-1 knapsack problem --- green shop scheduling --- fuzzy hybrid flow shop scheduling --- discrete artificial bee colony algorithm --- minimize makespan --- minimize total energy consumption
Choose an application
This book presents the latest findings on one of the most intensely investigated subjects in computational mathematics--the traveling salesman problem. It sounds simple enough: given a set of cities and the cost of travel between each pair of them, the problem challenges you to find the cheapest route by which to visit all the cities and return home to where you began. Though seemingly modest, this exercise has inspired studies by mathematicians, chemists, and physicists. Teachers use it in the classroom. It has practical applications in genetics, telecommunications, and neuroscience. The authors of this book are the same pioneers who for nearly two decades have led the investigation into the traveling salesman problem. They have derived solutions to almost eighty-six thousand cities, yet a general solution to the problem has yet to be discovered. Here they describe the method and computer code they used to solve a broad range of large-scale problems, and along the way they demonstrate the interplay of applied mathematics with increasingly powerful computing platforms. They also give the fascinating history of the problem--how it developed, and why it continues to intrigue us.
Traveling salesman problem. --- TSP (Traveling salesman problem) --- Combinatorial optimization --- Graph theory --- Vehicle routing problem --- AT&T Labs. --- Accuracy and precision. --- Addition. --- Algorithm. --- Analysis of algorithms. --- Applied mathematics. --- Approximation algorithm. --- Approximation. --- Basic solution (linear programming). --- Best, worst and average case. --- Bifurcation theory. --- Big O notation. --- CPLEX. --- CPU time. --- Calculation. --- Chaos theory. --- Column generation. --- Combinatorial optimization. --- Computation. --- Computational resource. --- Computer. --- Connected component (graph theory). --- Connectivity (graph theory). --- Convex hull. --- Cutting-plane method. --- Delaunay triangulation. --- Determinism. --- Disjoint sets. --- Dynamic programming. --- Ear decomposition. --- Engineering. --- Enumeration. --- Equation. --- Estimation. --- Euclidean distance. --- Euclidean space. --- Family of sets. --- For loop. --- Genetic algorithm. --- George Dantzig. --- Georgia Institute of Technology. --- Greedy algorithm. --- Hamiltonian path. --- Hospitality. --- Hypergraph. --- Implementation. --- Instance (computer science). --- Institute. --- Integer. --- Iteration. --- Linear inequality. --- Linear programming. --- Mathematical optimization. --- Mathematics. --- Model of computation. --- Neuroscience. --- Notation. --- Operations research. --- Optimization problem. --- Order by. --- Pairwise. --- Parameter (computer programming). --- Parity (mathematics). --- Percentage. --- Polyhedron. --- Polytope. --- Pricing. --- Princeton University. --- Processing (programming language). --- Project. --- Quantity. --- Reduced cost. --- Requirement. --- Result. --- Rice University. --- Rutgers University. --- Scientific notation. --- Search algorithm. --- Search tree. --- Self-similarity. --- Simplex algorithm. --- Solution set. --- Solver. --- Source code. --- Special case. --- Stochastic. --- Subroutine. --- Subsequence. --- Subset. --- Summation. --- Test set. --- Theorem. --- Theory. --- Time complexity. --- Trade-off. --- Travelling salesman problem. --- Tree (data structure). --- Upper and lower bounds. --- Variable (computer science). --- Variable (mathematics).
Choose an application
Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms.
Technology: general issues --- global optimization --- cuckoo search algorithm --- Q-learning --- mutation --- self-adaptive step size --- evolutionary computation --- playtesting --- game feature --- game simulation --- game trees --- playtesting metric --- validation --- Pareto optimality --- h-index --- ranking --- dominance --- Pareto-front --- multi-indicators --- multi-metric --- multi-resources --- citation --- universities ranking --- swarm intelligence --- simulated annealing --- krill herd --- particle swarm optimization --- quantum --- elephant herding optimization --- engineering optimization --- metaheuristic --- constrained optimization --- multi-objective optimization --- single objective optimization --- differential evolution --- success-history --- premature convergence --- turning-based mutation --- opposition-based learning --- ant colony optimization --- opposite path --- traveling salesman problems --- whale optimization algorithm --- WOA --- binary whale optimization algorithm --- bWOA-S --- bWOA-V --- feature selection --- classification --- dimensionality reduction --- menu planning problem --- evolutionary algorithm --- decomposition-based multi-objective optimisation --- memetic algorithm --- iterated local search --- diversity preservation --- single-objective optimization --- knapsack problem --- travelling salesman problem --- seed schedule --- many-objective optimization --- fuzzing --- bug detection --- path discovery --- evolutionary algorithms (EAs) --- coevolution --- dynamic learning --- performance indicators --- magnetotelluric --- one-dimensional inversions --- geoelectric model --- optimization problem --- multi-task optimization --- multi-task evolutionary computation --- knowledge transfer --- assortative mating --- unified search space --- quantum computing --- grey wolf optimizer --- 0-1 knapsack problem --- green shop scheduling --- fuzzy hybrid flow shop scheduling --- discrete artificial bee colony algorithm --- minimize makespan --- minimize total energy consumption
Choose an application
Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms.
global optimization --- cuckoo search algorithm --- Q-learning --- mutation --- self-adaptive step size --- evolutionary computation --- playtesting --- game feature --- game simulation --- game trees --- playtesting metric --- validation --- Pareto optimality --- h-index --- ranking --- dominance --- Pareto-front --- multi-indicators --- multi-metric --- multi-resources --- citation --- universities ranking --- swarm intelligence --- simulated annealing --- krill herd --- particle swarm optimization --- quantum --- elephant herding optimization --- engineering optimization --- metaheuristic --- constrained optimization --- multi-objective optimization --- single objective optimization --- differential evolution --- success-history --- premature convergence --- turning-based mutation --- opposition-based learning --- ant colony optimization --- opposite path --- traveling salesman problems --- whale optimization algorithm --- WOA --- binary whale optimization algorithm --- bWOA-S --- bWOA-V --- feature selection --- classification --- dimensionality reduction --- menu planning problem --- evolutionary algorithm --- decomposition-based multi-objective optimisation --- memetic algorithm --- iterated local search --- diversity preservation --- single-objective optimization --- knapsack problem --- travelling salesman problem --- seed schedule --- many-objective optimization --- fuzzing --- bug detection --- path discovery --- evolutionary algorithms (EAs) --- coevolution --- dynamic learning --- performance indicators --- magnetotelluric --- one-dimensional inversions --- geoelectric model --- optimization problem --- multi-task optimization --- multi-task evolutionary computation --- knowledge transfer --- assortative mating --- unified search space --- quantum computing --- grey wolf optimizer --- 0-1 knapsack problem --- green shop scheduling --- fuzzy hybrid flow shop scheduling --- discrete artificial bee colony algorithm --- minimize makespan --- minimize total energy consumption
Listing 1 - 4 of 4 |
Sort by
|