Listing 1 - 10 of 702 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Number theory --- Number theory. --- Number study --- Numbers, Theory of --- Algebra
Choose an application
Number theory --- Number theory. --- Number study --- Numbers, Theory of --- Algebra
Choose an application
Number theory --- Number theory. --- Number study --- Numbers, Theory of --- Algebra
Choose an application
Number theory --- Number study --- Numbers, Theory of --- Algebra
Choose an application
Dear Friends of Numbers: This little book is for you. It should o?er an exquisite int- lectual enjoyment, which only relatively few fortunate people can experience. May these essays stimulate your curiosity and lead you to books and articles where these matters are discussed at a more technical level. I warn you, however, that the problems treated, in spite of - ing easy to state, are for the most part very di?cult. Many are still unsolved. You will see how mathematicians have attacked these problems. Brains at work! But do not blame me for sleepless nights (I have mine already). Several of the essays grew out of lectures given over the course of years on my customary errances. Other chapters could, but probably never will, become full-sized books. The diversity of topics shows the many guises numbers take to ? tantalize and to demand a mobility of spirit from you, my reader, who is already anxious to leave this preface. Now go to page 1 (or 127?). Paulo Ribenboim ? Tantalus, of Greek mythology, was punished by continual disappointment whenhetriedtoeatordrinkwhatwasplacedwithinhisreach. 1 The Fibonacci Numbers and the Arctic Ocean Introduction There is indeed not much relation between the Fibonacci numbers and the Arctic Ocean, but I thought that this title would excite your curiosity for my lecture. You will be disappointed if you wished to hear about the Arctic Ocean, as my topic will be the sequence of Fibonacci numbers and similar sequences.
Number theory. --- Number Theory. --- Number study --- Numbers, Theory of --- Algebra
Choose an application
Elementary Methods in Number Theory begins with "a first course in number theory" for students with no previous knowledge of the subject. The main topics are divisibility, prime numbers, and congruences. There is also an introduction to Fourier analysis on finite abelian groups, and a discussion on the abc conjecture and its consequences in elementary number theory. In the second and third parts of the book, deep results in number theory are proved using only elementary methods. Part II is about multiplicative number theory, and includes two of the most famous results in mathematics: the Erdös-Selberg elementary proof of the prime number theorem, and Dirichlets theorem on primes in arithmetic progressions. Part III is an introduction to three classical topics in additive number theory: Warings problems for polynomials, Liouvilles method to determine the number of representations of an integer as the sum of an even number of squares, and the asymptotics of partition functions. Melvyn B. Nathanson is Professor of Mathematics at the City University of New York (Lehman College and the Graduate Center). He is the author of the two other graduate texts: Additive Number Theory: The Classical Bases and Additive Number Theory: Inverse Problems and the Geometry of Sumsets.
Number theory. --- Number Theory. --- Number study --- Numbers, Theory of --- Algebra
Listing 1 - 10 of 702 | << page >> |
Sort by
|