Narrow your search
Listing 1 - 9 of 9
Sort by

Book
Diacylglycerol Kinase Signalling
Authors: --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Diacylglycerol kinases (DGKs) phosphorylate diacylglycerol (DG), catalyzing its conversion into phosphatidic acid (PA). This reaction attenuates membrane DG levels, limiting the localization/activation of signaling proteins that bind this lipid. Initially recognized as modulators of classical and novel PKC family members, the function of the DGK has further expanded with the identification of novel DG effectors including Ras Guanyl nucleotide-releasing proteins (RasGRP) and chimaerin Rac GTPases. The product of the DGK reaction, PA, is also a signaling lipid that mediates activation of multiple proteins including the mammalian target of rapamycin (mTOR). The DGK pathway thus modulates two lipids with important signaling properties that are also key intermediates in lipid metabolism and membrane trafficking. The DGK family in eukaryotes comprises 10 different members grouped into five different subfamilies characterized by the presence of particular regulatory motifs. These regions allow the different DGK isoforms to establish specific complexes and/or to be recruited to specific subcellular compartments. The subtle regulation of DG and PA catalyzed byspecific DGKs is sensed by a restricted set of molecules, providing the means for spatio-temporal regulation of signals in highly specialized cell systems. In the recent years, multiple studies have unveiled the functions of specific isoforms, their mechanisms of regulation and their participation in different pathways leading to and from DG and PA. Animal models have greatly helped to understand the specialized contribution of DGK mediated signals, particularly in the immune and central nervous systems. Mice deficient for individual DGK isoforms show defects in T and B cell functions, dendritic spine maintenance, osteoclast and mechanical-induced skeletal muscle formation. Studies in flies and worms link DGK mediated DAG metabolism with mTOR- mediated regulation of lifespan and stress responses. In plants DGK mediated PA formation contributes to plant responses to environmental signals. Aberrant DGK function has been recently associated with pathological states, an expected consequence of the essential role of these enzymes in the regulation of multiple tissue and systemic functions. DGK mutations/deletions have been related to human diseases including diabetes, atypical hemolytic-uremic syndrome, Parkinson disease and bipolar disorders. On the contrary DGK upregulation emerges as a non-oncogenic addition of certain tumors and represents one of the main mechanism by which cancer evades the immune attack. As a result, the DGK field emerges an exciting new area of research with important therapeutic potential.


Book
Diacylglycerol Kinase Signalling
Authors: --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Diacylglycerol kinases (DGKs) phosphorylate diacylglycerol (DG), catalyzing its conversion into phosphatidic acid (PA). This reaction attenuates membrane DG levels, limiting the localization/activation of signaling proteins that bind this lipid. Initially recognized as modulators of classical and novel PKC family members, the function of the DGK has further expanded with the identification of novel DG effectors including Ras Guanyl nucleotide-releasing proteins (RasGRP) and chimaerin Rac GTPases. The product of the DGK reaction, PA, is also a signaling lipid that mediates activation of multiple proteins including the mammalian target of rapamycin (mTOR). The DGK pathway thus modulates two lipids with important signaling properties that are also key intermediates in lipid metabolism and membrane trafficking. The DGK family in eukaryotes comprises 10 different members grouped into five different subfamilies characterized by the presence of particular regulatory motifs. These regions allow the different DGK isoforms to establish specific complexes and/or to be recruited to specific subcellular compartments. The subtle regulation of DG and PA catalyzed byspecific DGKs is sensed by a restricted set of molecules, providing the means for spatio-temporal regulation of signals in highly specialized cell systems. In the recent years, multiple studies have unveiled the functions of specific isoforms, their mechanisms of regulation and their participation in different pathways leading to and from DG and PA. Animal models have greatly helped to understand the specialized contribution of DGK mediated signals, particularly in the immune and central nervous systems. Mice deficient for individual DGK isoforms show defects in T and B cell functions, dendritic spine maintenance, osteoclast and mechanical-induced skeletal muscle formation. Studies in flies and worms link DGK mediated DAG metabolism with mTOR- mediated regulation of lifespan and stress responses. In plants DGK mediated PA formation contributes to plant responses to environmental signals. Aberrant DGK function has been recently associated with pathological states, an expected consequence of the essential role of these enzymes in the regulation of multiple tissue and systemic functions. DGK mutations/deletions have been related to human diseases including diabetes, atypical hemolytic-uremic syndrome, Parkinson disease and bipolar disorders. On the contrary DGK upregulation emerges as a non-oncogenic addition of certain tumors and represents one of the main mechanism by which cancer evades the immune attack. As a result, the DGK field emerges an exciting new area of research with important therapeutic potential.


Book
Diacylglycerol Kinase Signalling
Authors: --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Diacylglycerol kinases (DGKs) phosphorylate diacylglycerol (DG), catalyzing its conversion into phosphatidic acid (PA). This reaction attenuates membrane DG levels, limiting the localization/activation of signaling proteins that bind this lipid. Initially recognized as modulators of classical and novel PKC family members, the function of the DGK has further expanded with the identification of novel DG effectors including Ras Guanyl nucleotide-releasing proteins (RasGRP) and chimaerin Rac GTPases. The product of the DGK reaction, PA, is also a signaling lipid that mediates activation of multiple proteins including the mammalian target of rapamycin (mTOR). The DGK pathway thus modulates two lipids with important signaling properties that are also key intermediates in lipid metabolism and membrane trafficking. The DGK family in eukaryotes comprises 10 different members grouped into five different subfamilies characterized by the presence of particular regulatory motifs. These regions allow the different DGK isoforms to establish specific complexes and/or to be recruited to specific subcellular compartments. The subtle regulation of DG and PA catalyzed byspecific DGKs is sensed by a restricted set of molecules, providing the means for spatio-temporal regulation of signals in highly specialized cell systems. In the recent years, multiple studies have unveiled the functions of specific isoforms, their mechanisms of regulation and their participation in different pathways leading to and from DG and PA. Animal models have greatly helped to understand the specialized contribution of DGK mediated signals, particularly in the immune and central nervous systems. Mice deficient for individual DGK isoforms show defects in T and B cell functions, dendritic spine maintenance, osteoclast and mechanical-induced skeletal muscle formation. Studies in flies and worms link DGK mediated DAG metabolism with mTOR- mediated regulation of lifespan and stress responses. In plants DGK mediated PA formation contributes to plant responses to environmental signals. Aberrant DGK function has been recently associated with pathological states, an expected consequence of the essential role of these enzymes in the regulation of multiple tissue and systemic functions. DGK mutations/deletions have been related to human diseases including diabetes, atypical hemolytic-uremic syndrome, Parkinson disease and bipolar disorders. On the contrary DGK upregulation emerges as a non-oncogenic addition of certain tumors and represents one of the main mechanism by which cancer evades the immune attack. As a result, the DGK field emerges an exciting new area of research with important therapeutic potential.


Article
Post-weaning social isolation of rats leads to a diminution of LTP in the CA1 to subiculum pathway.
Authors: ---
Year: 2003

Loading...
Export citation

Choose an application

Bookmark

Abstract

Post-weaning social isolation of rats produces psychological and physiological changes that are relevant to schizophrenia. Here, we report that long-term potentiation (LTP) in the CA1 to subiculum pathway is lower by 34%, (P<0.0001) in brain slices from isolates compared with those from socially housed rats. We also report that LTP in this pathway is NMDA receptor-dependent. (C) 2003 Elsevier B.V. All rights reserved


Article
Olfactory based spatial learning in neonatal mice and its dependence on CaMKII.
Authors: --- --- ---
Year: 2000

Loading...
Export citation

Choose an application

Bookmark

Abstract

Spatial learning and memory involves the ability to encode geometric relationships between perceived cues and depends critically on the hippocampus. Visually guided spatial learning has been demonstrated in adult animals. As infant animals rely heavily on olfaction, olfactory based spatial learning was assessed in infant mice. When 12-day-old pups were displaced from their nest, they learned within a few training trials to use the spatial pattern of odor cues to move back to the nest. However, mouse pups that over-expressed Ca2+/calmodulin-dependent protein kinase (CaMKII) in hippocampal neurons were impaired in olfactory based spatial learning. NeuroReport 11:1051-1055 (C) 2000 Lippincott Williams & Wilkins


Book
Silicon Nanodevices
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of scientific articles which brings research in Si nanodevices, device processing, and materials. The content is oriented to optoelectronics with a core in electronics and photonics. The issue of current technology developments in the nanodevices towards 3D integration and an emerging of the electronics and photonics as an ultimate goal in nanotechnology in the future is presented. The book contains a few review articles to update the knowledge in Si-based devices and followed by processing of advanced nano-scale transistors. Furthermore, material growth and manufacturing of several types of devices are presented. The subjects are carefully chosen to critically cover the scientific issues for scientists and doctoral students.


Book
Silicon Nanodevices
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of scientific articles which brings research in Si nanodevices, device processing, and materials. The content is oriented to optoelectronics with a core in electronics and photonics. The issue of current technology developments in the nanodevices towards 3D integration and an emerging of the electronics and photonics as an ultimate goal in nanotechnology in the future is presented. The book contains a few review articles to update the knowledge in Si-based devices and followed by processing of advanced nano-scale transistors. Furthermore, material growth and manufacturing of several types of devices are presented. The subjects are carefully chosen to critically cover the scientific issues for scientists and doctoral students.


Book
Silicon Nanodevices
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of scientific articles which brings research in Si nanodevices, device processing, and materials. The content is oriented to optoelectronics with a core in electronics and photonics. The issue of current technology developments in the nanodevices towards 3D integration and an emerging of the electronics and photonics as an ultimate goal in nanotechnology in the future is presented. The book contains a few review articles to update the knowledge in Si-based devices and followed by processing of advanced nano-scale transistors. Furthermore, material growth and manufacturing of several types of devices are presented. The subjects are carefully chosen to critically cover the scientific issues for scientists and doctoral students.


Book
Molecular mechanisms for sensory signals : recognition and transformation
Author:
ISBN: 0691628939 0691603928 Year: 2017 Publisher: Princeton, [New Jersey] : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Pursuing the questions of how we learn and how memory is made, Edward Kosower introduces a novel and rich approach to connecting molecular properties with the biological properties that enable us to write and read, to create culture and ethics, and to think. Here he examines what happens within a single cell in reaction to external stimuli, and shows the parallels between single cell and multicellular responses. To address the problem of "learning," Kosower explains the molecular mechanisms of responses to input from taste, olfactory, and visual receptors. He then shows how these and other processes serve as the basis for memory. This study covers such signals for the molecular process of learning as pheromones (the molecular signals mediating behavior), light (activates the G-protein receptor, rhodopsin), and acetylcholine (opens the nicotinic acetylcholine receptor). Kosower's discussion of the structure and function of these complex molecules has direct implications for such areas as molecular neurobiology, bioorganic chemistry, and drug design, in elucidating approaches to the structure of drug targets.Originally published in 1991.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Molecular neurobiology. --- Cellular signal transduction. --- Molecular recognition. --- Action potential. --- Activation. --- Amino acid. --- Antibody. --- Bilayer. --- Binding protein. --- Biological Assay. --- Biological membrane. --- Biological neural network. --- Biomolecular structure. --- Biosynthesis. --- Catalysis. --- Caudate nucleus. --- Cell surface receptor. --- Chemical change. --- Chemical modification. --- Chemical synapse. --- Chemoreceptor. --- Chemotaxis. --- Chromatin. --- Chromophore. --- Conformational change. --- Creatine kinase. --- Demethylation. --- Electron transport chain. --- Enzyme. --- GABA receptor. --- GABAA receptor. --- Ganglion cell. --- Gel electrophoresis. --- Gene product. --- Globulin. --- Glycine receptor. --- Golgi apparatus. --- Golgi cell. --- Ion channel. --- LTP induction. --- Libration (molecule). --- Ligand (biochemistry). --- Lysine. --- Lysozyme. --- Mechanism of action. --- Mechanoreceptor. --- Membrane potential. --- Methylation. --- Methyltransferase. --- Microvillus. --- Molecular configuration. --- Molecular electronic transition. --- Molecular graphics. --- Molecular sieve. --- Molecule. --- Motor neuron. --- Muscarinic acetylcholine receptor. --- Mutagen. --- Neurofilament. --- Neuroglia. --- Neurokinin A. --- Neuron. --- Neuropeptide. --- Neurotransmitter. --- Nicotinic acetylcholine receptor. --- Olfactory receptor neuron. --- Organism. --- Peptide. --- Permease. --- Pheromone binding protein. --- Pheromone. --- Phosphodiesterase. --- Phosphorylation. --- Physical organic chemistry. --- Plasma protein binding. --- Post-translational modification. --- Protein methylation. --- Protein phosphorylation. --- Protein primary structure. --- Protein structure. --- Protein synthesis inhibitor. --- Protein. --- Proteolysis. --- RNA interference. --- Receptor (biochemistry). --- Receptor modulator. --- Receptors, Neurotransmitter. --- Regulation of gene expression. --- Retina. --- Rhodopsin kinase. --- Rhodopsin. --- Sensory neuron. --- Side chain. --- Signal processing. --- Signal transduction. --- Sodium channel. --- Stimulus (physiology). --- Synapsin I. --- Synapsis. --- Synaptosome. --- Teratology. --- Transducin. --- Transposable element.

Listing 1 - 9 of 9
Sort by