Narrow your search

Library

KU Leuven (2)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UAntwerpen (1)

UCLouvain (1)

UCLL (1)

UGent (1)

UHasselt (1)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2016 (1)

2013 (1)

1974 (1)

Listing 1 - 3 of 3
Sort by
Discontinuous groups and Riemann surfaces: proceedings of the 1973 Conference at the University of Maryland
Author:
ISBN: 0691081387 1400881641 9780691081380 Year: 1974 Volume: 79 Publisher: Princeton, N.J.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Study 79 contains a collection of papers presented at the Conference on Discontinuous Groups and Ricmann Surfaces at the University of Maryland, May 21-25, 1973. The papers, by leading authorities, deal mainly with Fuchsian and Kleinian groups, Teichmüller spaces, Jacobian varieties, and quasiconformal mappings. These topics are intertwined, representing a common meeting of algebra, geometry, and analysis.

Keywords

Group theory --- Complex analysis --- Number theory --- RIEMANN SURFACES --- Discontinuous groups --- congresses --- Congresses --- Riemann surfaces --- Congresses. --- Groupes discontinus --- Combinatorial topology --- Functions of complex variables --- Surfaces, Riemann --- Functions --- Abelian variety. --- Adjunction (field theory). --- Affine space. --- Algebraic curve. --- Algebraic structure. --- Analytic function. --- Arithmetic genus. --- Automorphism. --- Bernhard Riemann. --- Boundary (topology). --- Cauchy sequence. --- Cauchy–Schwarz inequality. --- Cayley–Hamilton theorem. --- Closed geodesic. --- Combination. --- Commutative diagram. --- Commutator subgroup. --- Compact Riemann surface. --- Complex dimension. --- Complex manifold. --- Complex multiplication. --- Complex space. --- Complex torus. --- Congruence subgroup. --- Conjugacy class. --- Convex set. --- Cyclic group. --- Degeneracy (mathematics). --- Diagram (category theory). --- Diffeomorphism. --- Differential form. --- Dimension (vector space). --- Disjoint sets. --- E7 (mathematics). --- Endomorphism. --- Equation. --- Equivalence class. --- Euclidean space. --- Existence theorem. --- Existential quantification. --- Finite group. --- Finitely generated group. --- Fuchsian group. --- Fundamental domain. --- Fundamental lemma (Langlands program). --- Fundamental polygon. --- Galois extension. --- Holomorphic function. --- Homeomorphism. --- Homology (mathematics). --- Homomorphism. --- Hurwitz's theorem (number theory). --- Inclusion map. --- Inequality (mathematics). --- Inner automorphism. --- Intersection (set theory). --- Irreducibility (mathematics). --- Isomorphism class. --- Isomorphism theorem. --- Jacobian variety. --- Jordan curve theorem. --- Kleinian group. --- Limit point. --- Mapping class group. --- Metric space. --- Monodromy. --- Monomorphism. --- Möbius transformation. --- Non-Euclidean geometry. --- Orthogonal trajectory. --- Permutation. --- Polynomial. --- Power series. --- Projective variety. --- Quadratic differential. --- Quadric. --- Quasi-projective variety. --- Quasiconformal mapping. --- Quotient space (topology). --- Rectangle. --- Riemann mapping theorem. --- Riemann surface. --- Schwarzian derivative. --- Simply connected space. --- Simultaneous equations. --- Special case. --- Subgroup. --- Subsequence. --- Surjective function. --- Symmetric space. --- Tangent space. --- Teichmüller space. --- Theorem. --- Topological space. --- Topology. --- Uniqueness theorem. --- Unit disk. --- Variable (mathematics). --- Winding number. --- Word problem (mathematics). --- RIEMANN SURFACES - congresses --- Discontinuous groups - Congresses --- Geometrie algebrique --- Fonctions d'une variable complexe --- Surfaces de riemann

Algebraic Curves over a Finite Field
Authors: --- ---
ISBN: 1400847419 9781400847419 1306988608 9781306988605 9781400847426 1400847427 0691096791 9780691096797 9780691096797 Year: 2013 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.

Keywords

Curves, Algebraic. --- Finite fields (Algebra) --- Modular fields (Algebra) --- Algebra, Abstract --- Algebraic fields --- Galois theory --- Modules (Algebra) --- Algebraic curves --- Algebraic varieties --- Abelian group. --- Abelian variety. --- Affine plane. --- Affine space. --- Affine variety. --- Algebraic closure. --- Algebraic curve. --- Algebraic equation. --- Algebraic extension. --- Algebraic function. --- Algebraic geometry. --- Algebraic integer. --- Algebraic number field. --- Algebraic number theory. --- Algebraic number. --- Algebraic variety. --- Algebraically closed field. --- Applied mathematics. --- Automorphism. --- Birational invariant. --- Characteristic exponent. --- Classification theorem. --- Clifford's theorem. --- Combinatorics. --- Complex number. --- Computation. --- Cyclic group. --- Cyclotomic polynomial. --- Degeneracy (mathematics). --- Degenerate conic. --- Divisor (algebraic geometry). --- Divisor. --- Dual curve. --- Dual space. --- Elliptic curve. --- Equation. --- Fermat curve. --- Finite field. --- Finite geometry. --- Finite group. --- Formal power series. --- Function (mathematics). --- Function field. --- Fundamental theorem. --- Galois extension. --- Galois theory. --- Gauss map. --- General position. --- Generic point. --- Geometry. --- Homogeneous polynomial. --- Hurwitz's theorem. --- Hyperelliptic curve. --- Hyperplane. --- Identity matrix. --- Inequality (mathematics). --- Intersection number (graph theory). --- Intersection number. --- J-invariant. --- Line at infinity. --- Linear algebra. --- Linear map. --- Mathematical induction. --- Mathematics. --- Menelaus' theorem. --- Modular curve. --- Natural number. --- Number theory. --- Parity (mathematics). --- Permutation group. --- Plane curve. --- Point at infinity. --- Polar curve. --- Polygon. --- Polynomial. --- Power series. --- Prime number. --- Projective plane. --- Projective space. --- Quadratic transformation. --- Quadric. --- Resolution of singularities. --- Riemann hypothesis. --- Scalar multiplication. --- Scientific notation. --- Separable extension. --- Separable polynomial. --- Sign (mathematics). --- Singular point of a curve. --- Special case. --- Subgroup. --- Sylow theorems. --- System of linear equations. --- Tangent. --- Theorem. --- Transcendence degree. --- Upper and lower bounds. --- Valuation ring. --- Variable (mathematics). --- Vector space.


Book
Combinatorial Group Theory and Topology. (AM-111), Volume 111
Authors: ---
ISBN: 1400882087 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Group theory and topology are closely related. The region of their interaction, combining the logical clarity of algebra with the depths of geometric intuition, is the subject of Combinatorial Group Theory and Topology. The work includes papers from a conference held in July 1984 at Alta Lodge, Utah.Contributors to the book include Roger Alperin, Hyman Bass, Max Benson, Joan S. Birman, Andrew J. Casson, Marshall Cohen, Donald J. Collins, Robert Craggs, Michael Dyer, Beno Eckmann, Stephen M. Gersten, Jane Gilman, Robert H. Gilman, Narain D. Gupta, John Hempel, James Howie, Roger Lyndon, Martin Lustig, Lee P. Neuwirth, Andrew J. Nicas, N. Patterson, John G. Ratcliffe, Frank Rimlinger, Caroline Series, John R. Stallings, C. W. Stark, and A. Royce Wolf.

Keywords

Combinatorial group theory --- Topology --- Abelian group. --- Algebraic equation. --- Algebraic integer. --- Automorphism. --- Basis (linear algebra). --- Betti number. --- Cayley graph. --- Cayley–Hamilton theorem. --- Characteristic polynomial. --- Characteristic subgroup. --- Characterization (mathematics). --- Classifying space. --- Combinatorial group theory. --- Combinatorics. --- Commutative algebra. --- Commutative property. --- Commutator subgroup. --- Compactification (mathematics). --- Complement (set theory). --- Conformal map. --- Conjugacy class. --- Connected component (graph theory). --- Connectivity (graph theory). --- Coprime integers. --- Coset. --- Coxeter group. --- Cyclic group. --- Cyclic permutation. --- Degeneracy (mathematics). --- Dehn's lemma. --- Diagram (category theory). --- Dirac delta function. --- Disk (mathematics). --- Epimorphism. --- Equation. --- Euclidean group. --- Finite group. --- Finitely generated abelian group. --- Finitely generated group. --- Free abelian group. --- Free group. --- Freiheitssatz. --- Fuchsian group. --- Function (mathematics). --- Fundamental domain. --- Fundamental group. --- Fundamental lemma (Langlands program). --- G-module. --- General linear group. --- Generating set of a group. --- Geodesic. --- Graph (discrete mathematics). --- Graph of groups. --- Graph product. --- Group theory. --- Haken manifold. --- Harmonic analysis. --- Homological algebra. --- Homology (mathematics). --- Homomorphism. --- Homotopy. --- Hurwitz's theorem (number theory). --- Hyperbolic 3-manifold. --- Identity theorem. --- Inclusion map. --- Inequality (mathematics). --- Inner automorphism. --- Intersection (set theory). --- Intersection number (graph theory). --- Intersection number. --- Invertible matrix. --- Jacobian matrix and determinant. --- Knot theory. --- Limit point. --- Mapping class group. --- Mapping cone (homological algebra). --- Mathematical induction. --- Module (mathematics). --- Parity (mathematics). --- Poincaré conjecture. --- Prime number. --- Pullback (category theory). --- Quotient group. --- Representation theory. --- Residually finite group. --- Riemann surface. --- Seifert–van Kampen theorem. --- Separatrix (mathematics). --- Set theory. --- Simplicial complex. --- Sphere theorem (3-manifolds). --- Sphere theorem. --- Subgroup. --- Sylow theorems. --- Theorem. --- Topology. --- Union (set theory). --- Uniqueness theorem. --- Variable (mathematics). --- Word problem (mathematics).

Listing 1 - 3 of 3
Sort by