Listing 1 - 10 of 57 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
517.984 --- Spectral theory of linear operators --- Hilbert space. --- Harmonic analysis. --- Transformations on linear Hilbert spaces --- Transformations on linear Hilbert spaces. --- 517.984 Spectral theory of linear operators --- Analyse fonctionnelle --- Functional analysis --- Opérateurs linéaires --- Opérateurs linéaires
Choose an application
The aim of this book is to give a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. These are a generalization of stochastic differential equations as introduced by Itô and Gikham that occur, for instance, when describing random phenomena that crop up in science and engineering, as well as in the study of differential equations. The book is divided into three parts. In the first the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. The book ends with a comprehensive bibliography that will contribute to the book's value for all working in stochastic differential equations.
Stochastic partial differential equations. --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial
Choose an application
Stochastic partial differential equations can be used in many areas of science to model complex systems that evolve over time. Their analysis is currently an area of much research interest. This book consists of papers given at the ICMS Edinburgh meeting held in 1994 on this topic, and it brings together some of the world's best known authorities on stochastic partial differential equations. Subjects covered include the stochastic Navier-Stokes equation, critical branching systems, population models, statistical dynamics, and ergodic properties of Markov semigroups. For all workers on stochastic partial differential equations this book will have much to offer.
Stochastic partial differential equations --- Differential equations, Partial --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces
Choose an application
Rigorous error estimates for amplitude equations are well known for deterministic PDEs, and there is a large body of literature over the past two decades. However, there seems to be a lack of literature for stochastic equations, although the theory is being successfully used in the applied community, such as for convective instabilities, without reliable error estimates at hand. This book is the first step in closing this gap. The author provides details about the reduction of dynamics to more simpler equations via amplitude or modulation equations, which relies on the natural separation of ti
Stochastic partial differential equations. --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial
Choose an application
The study of measure-valued processes in random environments has seen some intensive research activities in recent years whereby interesting nonlinear stochastic partial differential equations (SPDEs) were derived. Due to the nonlinearity and the non-Lipschitz continuity of their coefficients, new techniques and concepts have recently been developed for the study of such SPDEs. These include the conditional Laplace transform technique, the conditional mild solution, and the bridge between SPDEs and some kind of backward stochastic differential equations. This volume provides an introduction to
Stochastic partial differential equations. --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial --- Differential equations, Nonlinear.
Choose an application
QUANTUM MECHANICS --- HILBERT SPACES (NOT CAS) --- MOMENTUM --- BOND --- SYMMETRY --- LIGAND FIELD THEORY --- SOLIDS --- ELECTRON CONFIGURATION --- MOLECULAR VIBRATION --- MOLECULAR ROTATION
Listing 1 - 10 of 57 | << page >> |
Sort by
|