Listing 1 - 9 of 9 |
Sort by
|
Choose an application
Estradiol --- Estriol --- Estrone --- Metabolisme
Choose an application
Estradiol --- Estrone --- Metabolism. --- Metabolism.
Choose an application
Estradiol --- Estrone --- metabolism
Choose an application
Estrone. --- Prématurés. --- Nouveau-nés dysmatures. --- Troubles de la croissance.
Choose an application
Acyltransferases --- Esterases --- Pharmaceutical Preparations --- Hexosyltransferases --- Metabolism --- Metabolic Phenomena --- Glycosyltransferases --- Transferases --- Hydrolases --- Chemicals and Drugs --- Phenomena and Processes --- Enzymes --- Enzymes and Coenzymes --- Acetyltransferases --- Sulfatases --- Biological Transport --- Glucuronosyltransferase --- Xenobiotics --- Biologic Transport --- Transport, Biological --- Transport, Biologic --- 17 beta-Hydroxysteroid UDP-Glucuronosyltransferase --- 4-Nitrophenol-UDP-Glucuronosyltransferase --- 7-Hydroxycoumarin UDP Glucuronyltransferase --- Androsterone UDP-Glucuronosyltransferase --- Bilirubin UDP-Glucuronyltransferase --- Estrogen UDP-Glucuronosyltransferase --- Estrone Glucuronyltransferase --- Glucuronic Transferase --- Morphine Glucuronyltransferase --- UDP Glucuronyl Transferase --- UDP-Glucuronic Acid 3-O-beta-D-Galactosyl-D-Galactose Glucuronosyltransferase --- p-Nitrophenyl UDP-Glucuronosyltransferase --- Glucuronyltransferase --- UDP Glucuronosyltransferase --- 17 beta Hydroxysteroid UDP Glucuronosyltransferase --- 4 Nitrophenol UDP Glucuronosyltransferase --- 7 Hydroxycoumarin UDP Glucuronyltransferase --- Androsterone UDP Glucuronosyltransferase --- Bilirubin UDP Glucuronyltransferase --- Estrogen UDP Glucuronosyltransferase --- Glucuronosyltransferase, UDP --- Glucuronyl Transferase, UDP --- Glucuronyltransferase, 7-Hydroxycoumarin UDP --- Glucuronyltransferase, Estrone --- Glucuronyltransferase, Morphine --- Transferase, Glucuronic --- Transferase, UDP Glucuronyl --- UDP Glucuronic Acid 3 O beta D Galactosyl D Galactose Glucuronosyltransferase --- UDP Glucuronyltransferase, 7-Hydroxycoumarin --- UDP-Glucuronosyltransferase, 17 beta-Hydroxysteroid --- UDP-Glucuronosyltransferase, Androsterone --- UDP-Glucuronosyltransferase, Estrogen --- UDP-Glucuronosyltransferase, p-Nitrophenyl --- UDP-Glucuronyltransferase, Bilirubin --- p Nitrophenyl UDP Glucuronosyltransferase --- Coenzymes and Enzymes --- Biocatalysts --- Transferase --- Glycoside Transferases --- Transferases, Glycoside --- Metabolic Phenomenon --- Metabolic Process --- Metabolism Concepts --- Metabolism Phenomena --- Process, Metabolic --- Processes, Metabolic --- Anabolism --- Catabolism --- Metabolic Concepts --- Metabolic Processes --- Concept, Metabolic --- Concept, Metabolism --- Concepts, Metabolic --- Concepts, Metabolism --- Metabolic Concept --- Metabolism Concept --- Phenomena, Metabolic --- Phenomena, Metabolism --- Phenomenon, Metabolic --- Pharmaceutic Preparations --- Pharmaceutical Products --- Preparations, Pharmaceutical --- Drugs --- Preparations, Pharmaceutic --- Products, Pharmaceutical
Choose an application
Pharmaceutical Preparations --- analysis --- Drugs --- Pharmaceutical chemistry --- Médicaments --- Chimie pharmaceutique --- Analysis --- Yearbooks. --- Analyse --- Pharmaceutical Preparations - analysis --- Atenolol --- Camphre --- Chloroquine --- Cholecalciferol --- Cimetidine --- Disopyramide (phosphate) --- Indomethacine --- Ketofifene --- Melphalan --- Moxalactam (disodium) --- Oxyphenbutazone --- Pentazocine --- Phenytoine --- Pyridoxine --- Reserpine --- Saccharine --- Salicylamide --- Sulfadadiazine argent --- Sulindac --- Tetracycline (chlorhydrate --- Tolbutamide --- Vitamine d3 --- CHLORTHALIDONE --- IMIPRAMINE HCl --- CISPLATIN --- ANALYTICAL PROFILE --- TRIPELENNAMINE HCl --- XYLOMETAZOLINE HCl --- MEFLOQUINE HCl --- ACIDE IOPOANOIQUE --- LIDOCAINE --- LIDOCAINE HCl --- BENPERIDOL --- HYDRATE DE TERPINE --- ATROPINE --- ISOPROTERENOL --- WARFARIN --- NALOXONE HCl --- DIFLUNISAL --- BACLOFEN --- ACETAMINOPHEN --- HALOTHANE --- Bacitracine --- Bretylium --- Carbamazepine --- Ccyproheptadine --- Cefaclor --- Cefamandole --- Dibenzepine --- Digoxine --- Doxorubicine --- Fluphenazine --- Gentamicine (sulfate) --- Griseofulvine --- Haloperidol --- Khellin --- Lorazepam --- Methadone --- Methoxsalen --- Monographies medicaments --- Nadolol --- Nitrazepam --- Nitroglycerin --- Trifluoroperazine --- Acide ascorbique --- Acide flufenamique --- Aminophylline --- Captopril --- Cefotaxime --- Cefoxitine sodium --- Clofibrate --- Clotrimazole --- Dopamine chlorhydrate --- Ergonovine maleate --- Hexestrol --- Mestranol --- Noscapine --- Penicilline-g benzathine --- Phenylbutazone --- Sulfadiazine --- Amantadine --- Amikacine sulfate --- Benzocaine --- Dibucaine --- Dibucaine chlorhydrate --- Dioctylsulfosuccinate de sodium --- Estrone --- Etomidate --- Heparine sodium --- Hydrocortisone --- Isopropamide --- Metoprolol tartrate --- Phenylpropanolamine chlorhydrate --- Pilocarpine --- Pyrazinamide --- Pyrimethamine --- Quinine chlorhydrate --- Quinine sulfate --- Rutine --- Trimipramine maleate --- AMILORIDE CHLORHYDRATE --- AMINOGLUTETHIMIDE --- CAFEINE --- COCAINE CHLORHYDRATE --- EPHEDRINE CHLORHYDRATE --- OESTRADIOL --- GUANABENZ ACETATE --- IODAMIDE --- LITHIUM CARBONATE --- MAPROTILINE CHLORHYDRATE --- PENICILLIN G --- POTASSIUM --- PIROXICAM --- RANITIDINE --- STRYCHNINE --- VIDARABINE --- ZOMEPIRAC --- SODIUM --- CHLORAMPHENICOL --- LIDOCAINE CHLORHYDRATE --- SODIUM NITROPRUSSIATE --- Acide aminosalicylique --- Azathioprine --- Benzoate de benzyle --- Chlorhydrate d'emetine --- Chlorhydrate de clindamycine --- Chlorhydrate de methylphenidate --- Colchicine --- Cyanocobalamine --- Glibenclamide --- Heroine --- Hydrochlorothiazide --- Ketoprofen --- Nabinole --- Natamycine --- Oxytocine --- Penicillamine --- Phosphate de codeine
Choose an application
This book is a printed edition of the Special Issue entitled “Anticancer Agents: Design, Synthesis and Evaluation” that was published in Molecules. Two review articles and thirty research papers are included in the Special Issue. Three second-generation androgen receptor antagonists that have been approved by the U.S. FDA for the treatment of prostate cancer have been reviewed. Identification of mimics of protein partners as protein-protein interaction inhibitors via virtual screening has been summarized and discussed. Anticancer agents targeting various protein targets, including IGF-1R, Src, protein kinase, aromatase, HDAC, PARP, Toll-Like receptor, c-Met, PI3Kdelta, topoisomerase II, p53, and indoleamine 2,3-dioxygenase, have been explored. The analogs of three well-known tubulin-interacting natural products, paclitaxel, zampanolide, and colchicine, have been designed, synthesized, and evaluated. Several anticancer agents representing diverse chemical scaffolds were assessed in different kinds of cancer cell models. The capability of some anticancer agents to overcome the resistance to currently available drugs was also studied. In addition to looking into the in vitro ability of the anticancer agents to inhibit cancer cell proliferation, apoptosis, and cell cycle, in vivo antitumor efficacy in animal models and DFT were also investigated in some papers.
Medicine --- benzofurans --- chemical synthesis --- cytotoxic properties --- HeLa --- MOLT-4 --- K562 --- anticancer --- anti-neuroinflammation --- coumarin --- dihydroartemisinin --- flavonoids --- allene --- E-stereoselective --- regioselective --- anti-cancer activity --- cyanopyridone --- substituted pyridine --- pyridotriazine --- pyrazolopyridine --- thioxotriazopyridine --- anticancer activity --- HepG2 --- antitumor activity --- computational docking --- MDM2-p53 interaction --- xanthones --- yeast-based assays --- estrone derivatives --- hydrazine --- N-substituted pyrazoline --- anti-ovarian cancer --- topoisomerase II inhibitor --- kinase inhibitor --- antiproliferative agent --- urea --- synthesis --- antiproliferative activity --- apoptosis --- indoleamine 2,3-dioxygenase --- inhibitor --- anti-tumor --- immune modulation --- tryptophan metabolism --- taxoids --- βIII-tubulin --- P-glycoprotein --- drug resistance --- thiopene --- thienopyrimidinone --- thiazolidinone --- breast cancer --- benzofuran–pyrazole --- nanoparticles --- cytotoxic activity --- PARP-1 inhibition --- 3,6-dibromocarbazole --- 5-bromoindole --- carbazole --- actin --- migration --- Thienopyrimidine --- Pyrazole --- PI3Kα inhibitor --- quinazolin-4(3H)-one --- quinazolin-4(3H)-thione --- Schiff base --- antioxidant activity --- DFT study --- ortho-quinones --- beta-lapachone --- tanshione IIA --- PI3Ks --- PI3Kδ inhibitors --- 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide --- anticancer agents --- protein–protein interactions --- virtual screening --- mimetics --- drug discovery --- bivalency --- polyvalency --- antitumor --- cell cycle --- ovarian cancer --- P-MAPA --- IL-12 --- TLR signaling --- inflammation --- chemoresistance --- 4-(pyridin-4-yloxy)benzamide --- 1,2,3-triazole --- c-Met --- natural product --- anticancer agent --- zampanolide --- Talazoparib --- PARP inhibitor --- prodrug --- o-nitro-benzyl --- photoactivatable protecting groups --- salinomycin --- overcoming drug resistance --- tumor specificity --- synergy --- 5-fluorouracil --- gemcitabine --- amides/esters --- colchicine analogs --- thiocolchicine --- colchiceine --- antimitotic agents --- hydrates --- dihydropyranoindole --- HDAC inhibitors --- neuroblastoma --- aromatase --- MCF-7 --- NIH3T3 --- benzimidazole --- triazolothiadiazine --- docking --- ADME --- organosilicon compounds --- SILA-409 (Alis-409) --- SILA-421 (Alis-421) --- multidrug resistance (MDR) reversal --- ABCB1 (P-glycoprotein) --- colon cancer --- colchicine amide --- colchicine sulfonamide --- tubulin inhibitors --- docking studies --- crystal structure --- PROTACs --- protein degradation --- IGF-1R --- Src --- protein kinase --- phenylpyrazolopyrimidine --- enzyme inhibition --- molecular simulation --- androgen receptor --- prostate cancer --- enzalutamide --- apalutamide --- darolutamide --- triple-negative breast cancer --- cytotoxicity --- chrysin analogues --- flavonoid --- anticancer compounds --- benzofurans --- chemical synthesis --- cytotoxic properties --- HeLa --- MOLT-4 --- K562 --- anticancer --- anti-neuroinflammation --- coumarin --- dihydroartemisinin --- flavonoids --- allene --- E-stereoselective --- regioselective --- anti-cancer activity --- cyanopyridone --- substituted pyridine --- pyridotriazine --- pyrazolopyridine --- thioxotriazopyridine --- anticancer activity --- HepG2 --- antitumor activity --- computational docking --- MDM2-p53 interaction --- xanthones --- yeast-based assays --- estrone derivatives --- hydrazine --- N-substituted pyrazoline --- anti-ovarian cancer --- topoisomerase II inhibitor --- kinase inhibitor --- antiproliferative agent --- urea --- synthesis --- antiproliferative activity --- apoptosis --- indoleamine 2,3-dioxygenase --- inhibitor --- anti-tumor --- immune modulation --- tryptophan metabolism --- taxoids --- βIII-tubulin --- P-glycoprotein --- drug resistance --- thiopene --- thienopyrimidinone --- thiazolidinone --- breast cancer --- benzofuran–pyrazole --- nanoparticles --- cytotoxic activity --- PARP-1 inhibition --- 3,6-dibromocarbazole --- 5-bromoindole --- carbazole --- actin --- migration --- Thienopyrimidine --- Pyrazole --- PI3Kα inhibitor --- quinazolin-4(3H)-one --- quinazolin-4(3H)-thione --- Schiff base --- antioxidant activity --- DFT study --- ortho-quinones --- beta-lapachone --- tanshione IIA --- PI3Ks --- PI3Kδ inhibitors --- 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide --- anticancer agents --- protein–protein interactions --- virtual screening --- mimetics --- drug discovery --- bivalency --- polyvalency --- antitumor --- cell cycle --- ovarian cancer --- P-MAPA --- IL-12 --- TLR signaling --- inflammation --- chemoresistance --- 4-(pyridin-4-yloxy)benzamide --- 1,2,3-triazole --- c-Met --- natural product --- anticancer agent --- zampanolide --- Talazoparib --- PARP inhibitor --- prodrug --- o-nitro-benzyl --- photoactivatable protecting groups --- salinomycin --- overcoming drug resistance --- tumor specificity --- synergy --- 5-fluorouracil --- gemcitabine --- amides/esters --- colchicine analogs --- thiocolchicine --- colchiceine --- antimitotic agents --- hydrates --- dihydropyranoindole --- HDAC inhibitors --- neuroblastoma --- aromatase --- MCF-7 --- NIH3T3 --- benzimidazole --- triazolothiadiazine --- docking --- ADME --- organosilicon compounds --- SILA-409 (Alis-409) --- SILA-421 (Alis-421) --- multidrug resistance (MDR) reversal --- ABCB1 (P-glycoprotein) --- colon cancer --- colchicine amide --- colchicine sulfonamide --- tubulin inhibitors --- docking studies --- crystal structure --- PROTACs --- protein degradation --- IGF-1R --- Src --- protein kinase --- phenylpyrazolopyrimidine --- enzyme inhibition --- molecular simulation --- androgen receptor --- prostate cancer --- enzalutamide --- apalutamide --- darolutamide --- triple-negative breast cancer --- cytotoxicity --- chrysin analogues --- flavonoid --- anticancer compounds
Choose an application
This book is a printed edition of the Special Issue entitled “Anticancer Agents: Design, Synthesis and Evaluation” that was published in Molecules. Two review articles and thirty research papers are included in the Special Issue. Three second-generation androgen receptor antagonists that have been approved by the U.S. FDA for the treatment of prostate cancer have been reviewed. Identification of mimics of protein partners as protein-protein interaction inhibitors via virtual screening has been summarized and discussed. Anticancer agents targeting various protein targets, including IGF-1R, Src, protein kinase, aromatase, HDAC, PARP, Toll-Like receptor, c-Met, PI3Kdelta, topoisomerase II, p53, and indoleamine 2,3-dioxygenase, have been explored. The analogs of three well-known tubulin-interacting natural products, paclitaxel, zampanolide, and colchicine, have been designed, synthesized, and evaluated. Several anticancer agents representing diverse chemical scaffolds were assessed in different kinds of cancer cell models. The capability of some anticancer agents to overcome the resistance to currently available drugs was also studied. In addition to looking into the in vitro ability of the anticancer agents to inhibit cancer cell proliferation, apoptosis, and cell cycle, in vivo antitumor efficacy in animal models and DFT were also investigated in some papers.
Medicine --- benzofurans --- chemical synthesis --- cytotoxic properties --- HeLa --- MOLT-4 --- K562 --- anticancer --- anti-neuroinflammation --- coumarin --- dihydroartemisinin --- flavonoids --- allene --- E-stereoselective --- regioselective --- anti-cancer activity --- cyanopyridone --- substituted pyridine --- pyridotriazine --- pyrazolopyridine --- thioxotriazopyridine --- anticancer activity --- HepG2 --- antitumor activity --- computational docking --- MDM2-p53 interaction --- xanthones --- yeast-based assays --- estrone derivatives --- hydrazine --- N-substituted pyrazoline --- anti-ovarian cancer --- topoisomerase II inhibitor --- kinase inhibitor --- antiproliferative agent --- urea --- synthesis --- antiproliferative activity --- apoptosis --- indoleamine 2,3-dioxygenase --- inhibitor --- anti-tumor --- immune modulation --- tryptophan metabolism --- taxoids --- βIII-tubulin --- P-glycoprotein --- drug resistance --- thiopene --- thienopyrimidinone --- thiazolidinone --- breast cancer --- benzofuran–pyrazole --- nanoparticles --- cytotoxic activity --- PARP-1 inhibition --- 3,6-dibromocarbazole --- 5-bromoindole --- carbazole --- actin --- migration --- Thienopyrimidine --- Pyrazole --- PI3Kα inhibitor --- quinazolin-4(3H)-one --- quinazolin-4(3H)-thione --- Schiff base --- antioxidant activity --- DFT study --- ortho-quinones --- beta-lapachone --- tanshione IIA --- PI3Ks --- PI3Kδ inhibitors --- 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide --- anticancer agents --- protein–protein interactions --- virtual screening --- mimetics --- drug discovery --- bivalency --- polyvalency --- antitumor --- cell cycle --- ovarian cancer --- P-MAPA --- IL-12 --- TLR signaling --- inflammation --- chemoresistance --- 4-(pyridin-4-yloxy)benzamide --- 1,2,3-triazole --- c-Met --- natural product --- anticancer agent --- zampanolide --- Talazoparib --- PARP inhibitor --- prodrug --- o-nitro-benzyl --- photoactivatable protecting groups --- salinomycin --- overcoming drug resistance --- tumor specificity --- synergy --- 5-fluorouracil --- gemcitabine --- amides/esters --- colchicine analogs --- thiocolchicine --- colchiceine --- antimitotic agents --- hydrates --- dihydropyranoindole --- HDAC inhibitors --- neuroblastoma --- aromatase --- MCF-7 --- NIH3T3 --- benzimidazole --- triazolothiadiazine --- docking --- ADME --- organosilicon compounds --- SILA-409 (Alis-409) --- SILA-421 (Alis-421) --- multidrug resistance (MDR) reversal --- ABCB1 (P-glycoprotein) --- colon cancer --- colchicine amide --- colchicine sulfonamide --- tubulin inhibitors --- docking studies --- crystal structure --- PROTACs --- protein degradation --- IGF-1R --- Src --- protein kinase --- phenylpyrazolopyrimidine --- enzyme inhibition --- molecular simulation --- androgen receptor --- prostate cancer --- enzalutamide --- apalutamide --- darolutamide --- triple-negative breast cancer --- cytotoxicity --- chrysin analogues --- flavonoid --- anticancer compounds
Choose an application
This book is a printed edition of the Special Issue entitled “Anticancer Agents: Design, Synthesis and Evaluation” that was published in Molecules. Two review articles and thirty research papers are included in the Special Issue. Three second-generation androgen receptor antagonists that have been approved by the U.S. FDA for the treatment of prostate cancer have been reviewed. Identification of mimics of protein partners as protein-protein interaction inhibitors via virtual screening has been summarized and discussed. Anticancer agents targeting various protein targets, including IGF-1R, Src, protein kinase, aromatase, HDAC, PARP, Toll-Like receptor, c-Met, PI3Kdelta, topoisomerase II, p53, and indoleamine 2,3-dioxygenase, have been explored. The analogs of three well-known tubulin-interacting natural products, paclitaxel, zampanolide, and colchicine, have been designed, synthesized, and evaluated. Several anticancer agents representing diverse chemical scaffolds were assessed in different kinds of cancer cell models. The capability of some anticancer agents to overcome the resistance to currently available drugs was also studied. In addition to looking into the in vitro ability of the anticancer agents to inhibit cancer cell proliferation, apoptosis, and cell cycle, in vivo antitumor efficacy in animal models and DFT were also investigated in some papers.
benzofurans --- chemical synthesis --- cytotoxic properties --- HeLa --- MOLT-4 --- K562 --- anticancer --- anti-neuroinflammation --- coumarin --- dihydroartemisinin --- flavonoids --- allene --- E-stereoselective --- regioselective --- anti-cancer activity --- cyanopyridone --- substituted pyridine --- pyridotriazine --- pyrazolopyridine --- thioxotriazopyridine --- anticancer activity --- HepG2 --- antitumor activity --- computational docking --- MDM2-p53 interaction --- xanthones --- yeast-based assays --- estrone derivatives --- hydrazine --- N-substituted pyrazoline --- anti-ovarian cancer --- topoisomerase II inhibitor --- kinase inhibitor --- antiproliferative agent --- urea --- synthesis --- antiproliferative activity --- apoptosis --- indoleamine 2,3-dioxygenase --- inhibitor --- anti-tumor --- immune modulation --- tryptophan metabolism --- taxoids --- βIII-tubulin --- P-glycoprotein --- drug resistance --- thiopene --- thienopyrimidinone --- thiazolidinone --- breast cancer --- benzofuran–pyrazole --- nanoparticles --- cytotoxic activity --- PARP-1 inhibition --- 3,6-dibromocarbazole --- 5-bromoindole --- carbazole --- actin --- migration --- Thienopyrimidine --- Pyrazole --- PI3Kα inhibitor --- quinazolin-4(3H)-one --- quinazolin-4(3H)-thione --- Schiff base --- antioxidant activity --- DFT study --- ortho-quinones --- beta-lapachone --- tanshione IIA --- PI3Ks --- PI3Kδ inhibitors --- 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide --- anticancer agents --- protein–protein interactions --- virtual screening --- mimetics --- drug discovery --- bivalency --- polyvalency --- antitumor --- cell cycle --- ovarian cancer --- P-MAPA --- IL-12 --- TLR signaling --- inflammation --- chemoresistance --- 4-(pyridin-4-yloxy)benzamide --- 1,2,3-triazole --- c-Met --- natural product --- anticancer agent --- zampanolide --- Talazoparib --- PARP inhibitor --- prodrug --- o-nitro-benzyl --- photoactivatable protecting groups --- salinomycin --- overcoming drug resistance --- tumor specificity --- synergy --- 5-fluorouracil --- gemcitabine --- amides/esters --- colchicine analogs --- thiocolchicine --- colchiceine --- antimitotic agents --- hydrates --- dihydropyranoindole --- HDAC inhibitors --- neuroblastoma --- aromatase --- MCF-7 --- NIH3T3 --- benzimidazole --- triazolothiadiazine --- docking --- ADME --- organosilicon compounds --- SILA-409 (Alis-409) --- SILA-421 (Alis-421) --- multidrug resistance (MDR) reversal --- ABCB1 (P-glycoprotein) --- colon cancer --- colchicine amide --- colchicine sulfonamide --- tubulin inhibitors --- docking studies --- crystal structure --- PROTACs --- protein degradation --- IGF-1R --- Src --- protein kinase --- phenylpyrazolopyrimidine --- enzyme inhibition --- molecular simulation --- androgen receptor --- prostate cancer --- enzalutamide --- apalutamide --- darolutamide --- triple-negative breast cancer --- cytotoxicity --- chrysin analogues --- flavonoid --- anticancer compounds
Listing 1 - 9 of 9 |
Sort by
|