Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Oxidative stress and altered redox signaling have been described in a plethora of pathological conditions. Redox-active molecules can thus potentially be used to modulate the etiology/progression of such diseases. Recent advances in molecular biology and pharmacology have strengthened this area of research by providing novel mechanistic insights. This book compiles a collection of 13 articles, covering a range of topics from in vitro studies to clinical research, focused on the potential therapeutic effects of either natural or synthetic compounds, applicable to different redox-related diseases.
non-small cell lung cancer --- cisplatin --- apurinic/apyrimidinic endonuclease 1 --- E3330 --- cytotoxicity --- apoptosis --- migration --- invasion --- oxidative stress --- sildenafil --- DNA damage --- systemic sclerosis --- bioactivity-based assays --- cyanidin --- metabolomics --- Rubus genus --- (poly)phenols --- yeast-based discovery platform --- withanolide --- breast cancer --- mitochondrial reactive oxygen species --- peroxiredoxin 3 --- pro-oxidant therapy --- thiostrepton --- GSH --- Cysteamine --- N-acetyl cysteine --- KEAP1 --- NRF2 --- ATF4 --- adipose-derived mesenchymal stem cell --- amniotic membrane-derived mesenchymal stem cell --- antioxidants --- assisted reproductive technology --- conditioned medium --- embryo --- in vitro culture --- in vitro fertilization --- BAPN --- cell invasion --- EMT --- lysyl-oxidase --- lysyl-oxidase like 2 --- metastases --- inhibitors --- doxorubicin --- chemoresistance --- redox signaling --- nuclear factor erythroid 2-related factor 2 (Nrf2) --- cancer therapy --- hydrogen sulfide --- reactive oxygen species --- H2S donors --- cardiorenal syndrome --- thiosulfate --- selenium-enriched Enterococcus faecium --- selenium-enriched Streptococcus thermophilus --- antioxidant capacity --- glutathione reductase --- glutathione peroxidase --- CD IGS rats --- lactic acid bacteria --- verbascoside --- hypercholesterolemia --- prostate cancer --- curcumin --- carnosic acid --- cell cycle --- OxPhos --- SGK1 --- n/a
Choose an application
Oxidative stress and altered redox signaling have been described in a plethora of pathological conditions. Redox-active molecules can thus potentially be used to modulate the etiology/progression of such diseases. Recent advances in molecular biology and pharmacology have strengthened this area of research by providing novel mechanistic insights. This book compiles a collection of 13 articles, covering a range of topics from in vitro studies to clinical research, focused on the potential therapeutic effects of either natural or synthetic compounds, applicable to different redox-related diseases.
Research & information: general --- Biology, life sciences --- non-small cell lung cancer --- cisplatin --- apurinic/apyrimidinic endonuclease 1 --- E3330 --- cytotoxicity --- apoptosis --- migration --- invasion --- oxidative stress --- sildenafil --- DNA damage --- systemic sclerosis --- bioactivity-based assays --- cyanidin --- metabolomics --- Rubus genus --- (poly)phenols --- yeast-based discovery platform --- withanolide --- breast cancer --- mitochondrial reactive oxygen species --- peroxiredoxin 3 --- pro-oxidant therapy --- thiostrepton --- GSH --- Cysteamine --- N-acetyl cysteine --- KEAP1 --- NRF2 --- ATF4 --- adipose-derived mesenchymal stem cell --- amniotic membrane-derived mesenchymal stem cell --- antioxidants --- assisted reproductive technology --- conditioned medium --- embryo --- in vitro culture --- in vitro fertilization --- BAPN --- cell invasion --- EMT --- lysyl-oxidase --- lysyl-oxidase like 2 --- metastases --- inhibitors --- doxorubicin --- chemoresistance --- redox signaling --- nuclear factor erythroid 2-related factor 2 (Nrf2) --- cancer therapy --- hydrogen sulfide --- reactive oxygen species --- H2S donors --- cardiorenal syndrome --- thiosulfate --- selenium-enriched Enterococcus faecium --- selenium-enriched Streptococcus thermophilus --- antioxidant capacity --- glutathione reductase --- glutathione peroxidase --- CD IGS rats --- lactic acid bacteria --- verbascoside --- hypercholesterolemia --- prostate cancer --- curcumin --- carnosic acid --- cell cycle --- OxPhos --- SGK1 --- non-small cell lung cancer --- cisplatin --- apurinic/apyrimidinic endonuclease 1 --- E3330 --- cytotoxicity --- apoptosis --- migration --- invasion --- oxidative stress --- sildenafil --- DNA damage --- systemic sclerosis --- bioactivity-based assays --- cyanidin --- metabolomics --- Rubus genus --- (poly)phenols --- yeast-based discovery platform --- withanolide --- breast cancer --- mitochondrial reactive oxygen species --- peroxiredoxin 3 --- pro-oxidant therapy --- thiostrepton --- GSH --- Cysteamine --- N-acetyl cysteine --- KEAP1 --- NRF2 --- ATF4 --- adipose-derived mesenchymal stem cell --- amniotic membrane-derived mesenchymal stem cell --- antioxidants --- assisted reproductive technology --- conditioned medium --- embryo --- in vitro culture --- in vitro fertilization --- BAPN --- cell invasion --- EMT --- lysyl-oxidase --- lysyl-oxidase like 2 --- metastases --- inhibitors --- doxorubicin --- chemoresistance --- redox signaling --- nuclear factor erythroid 2-related factor 2 (Nrf2) --- cancer therapy --- hydrogen sulfide --- reactive oxygen species --- H2S donors --- cardiorenal syndrome --- thiosulfate --- selenium-enriched Enterococcus faecium --- selenium-enriched Streptococcus thermophilus --- antioxidant capacity --- glutathione reductase --- glutathione peroxidase --- CD IGS rats --- lactic acid bacteria --- verbascoside --- hypercholesterolemia --- prostate cancer --- curcumin --- carnosic acid --- cell cycle --- OxPhos --- SGK1
Choose an application
The present book is devoted to all aspects of biosensing in a very broad definition, including, but not limited to, biomolecular composition used in biosensors (e.g., biocatalytic enzymes, DNAzymes, abiotic nanospecies with biocatalytic features, bioreceptors, DNA/RNA, aptasensors, etc.), physical signal transduction mechanisms (e.g., electrochemical, optical, magnetic, etc.), engineering of different biosensing platforms, operation of biosensors in vitro and in vivo (implantable or wearable devices), self-powered biosensors, etc. The biosensors can be represented with analogue devices measuring concentrations of analytes and binary devices operating in the YES/NO format, possibly with logical processing of input signals. Furthermore, the book is aimed at attracting young scientists and introducing them to the field, while providing newcomers with an enormous collection of literature references.
Technology: general issues --- metabolite sensors --- sensor biocompatibility --- ion selective electrodes --- foreign body reaction --- O2 --- glucose --- lactate --- biosensors --- bioelectrochemistry --- photo-biosensors --- enzyme --- biocatalysis --- electrochemical biosensors --- real-time --- continuous operation --- reagentless --- reusable --- calibration-free --- antibiofouling --- biosensor --- biomimetic membranes --- membrane-bound enzymes --- electrodes --- sulfur-containing nanomaterials --- metallic sulfide nanomaterials --- sulfur-containing quantum dots --- enzyme-based biosensors --- direct electron transfer (DET) --- redox enzymes --- nanostructured electrodes --- protein film voltammetry (PFV) --- glucose biosensors --- nanoporous metals --- nanoporous gold --- graphene --- carbon nanotube --- ordered mesoporous carbon --- additive manufacturing --- heme --- peroxidases --- semiconductors --- peroxidase mimics --- DNA assay --- nucleic acid --- isothermal --- signal amplification --- restriction endonuclease --- wearable biosensors --- metabolism --- remote monitoring --- sweat --- microfluidic --- 3D printing --- nanoparticle --- nanocomposite --- nanozyme --- synthesis --- catalytic properties --- nano-peroxidase --- nanooxidase --- nanolaccase --- electronanocatalyst --- amperometric (bio)sensors --- POC --- microfluidics --- immunosensor --- cancer --- biomarkers --- electrochemical DNA sensor --- nucleic acid sensor --- DNA --- RNA --- pathogen sensing --- 2D-materials --- field-effect transistor --- transition metal dichalcogenides --- black phosphorus --- phosphorene --- hexagonal boron nitride --- transition metal oxides --- current-potential curve --- multi-enzymatic cascades --- multianalyte detection --- mass-transfer-controlled amperometric response --- potentiometric coulometry --- MXenes --- 2D nanomaterials --- wearables --- electrochemistry --- bacteria --- electrochemical ELISA --- electrochemical immunoassays --- electrochemical aptamer-based assays --- chemical sensor --- field effect --- capacitive EIS sensor --- pH sensor --- enzyme biosensor --- label-free detection --- charged molecules --- DNA biosensor --- protein detection --- forensics --- biometrics --- cybersecurity --- fingerprints --- blood --- cipher --- non-invasive biosensors --- human physiological fluids --- tears --- saliva --- urine --- metabolite sensors --- sensor biocompatibility --- ion selective electrodes --- foreign body reaction --- O2 --- glucose --- lactate --- biosensors --- bioelectrochemistry --- photo-biosensors --- enzyme --- biocatalysis --- electrochemical biosensors --- real-time --- continuous operation --- reagentless --- reusable --- calibration-free --- antibiofouling --- biosensor --- biomimetic membranes --- membrane-bound enzymes --- electrodes --- sulfur-containing nanomaterials --- metallic sulfide nanomaterials --- sulfur-containing quantum dots --- enzyme-based biosensors --- direct electron transfer (DET) --- redox enzymes --- nanostructured electrodes --- protein film voltammetry (PFV) --- glucose biosensors --- nanoporous metals --- nanoporous gold --- graphene --- carbon nanotube --- ordered mesoporous carbon --- additive manufacturing --- heme --- peroxidases --- semiconductors --- peroxidase mimics --- DNA assay --- nucleic acid --- isothermal --- signal amplification --- restriction endonuclease --- wearable biosensors --- metabolism --- remote monitoring --- sweat --- microfluidic --- 3D printing --- nanoparticle --- nanocomposite --- nanozyme --- synthesis --- catalytic properties --- nano-peroxidase --- nanooxidase --- nanolaccase --- electronanocatalyst --- amperometric (bio)sensors --- POC --- microfluidics --- immunosensor --- cancer --- biomarkers --- electrochemical DNA sensor --- nucleic acid sensor --- DNA --- RNA --- pathogen sensing --- 2D-materials --- field-effect transistor --- transition metal dichalcogenides --- black phosphorus --- phosphorene --- hexagonal boron nitride --- transition metal oxides --- current-potential curve --- multi-enzymatic cascades --- multianalyte detection --- mass-transfer-controlled amperometric response --- potentiometric coulometry --- MXenes --- 2D nanomaterials --- wearables --- electrochemistry --- bacteria --- electrochemical ELISA --- electrochemical immunoassays --- electrochemical aptamer-based assays --- chemical sensor --- field effect --- capacitive EIS sensor --- pH sensor --- enzyme biosensor --- label-free detection --- charged molecules --- DNA biosensor --- protein detection --- forensics --- biometrics --- cybersecurity --- fingerprints --- blood --- cipher --- non-invasive biosensors --- human physiological fluids --- tears --- saliva --- urine
Choose an application
This Special Issue of International Journal of Molecular Sciences (IJMS) is dedicated to the mechanisms mediated at the molecular and cellular levels in response to adverse genomic perturbations and DNA replication stress. The relevant proteins and processes play paramount roles in nucleic acid transactions to maintain genomic stability and cellular homeostasis. A total of 18 articles are presented which encompass a broad range of highly relevant topics in genome biology. These include replication fork dynamics, DNA repair processes, DNA damage signaling and cell cycle control, cancer biology, epigenetics, cellular senescence, neurodegeneration, and aging. As Guest Editor for this IJMS Special Issue, I am very pleased to offer this collection of riveting articles centered on the theme of DNA replication stress. The blend of articles builds upon a theme that DNA damage has profound consequences for genomic stability and cellular homeostasis that affect tissue function, disease, cancer, and aging at multiple levels and through unique mechanisms. I thank the authors for their excellent contributions, which provide new insight into this fascinating and highly relevant area of genome biology.
Werner Syndrome --- n/a --- A549 cells --- epigenetic --- neurodegeneration --- Genome integrity --- adaptation --- cellular senescence --- genome instability --- Werner Syndrome Protein --- lipofuscin --- cell cycle checkpoints --- exonuclease 1 --- template-switching --- energy metabolism --- mutation frequency --- DNA replication --- fork regression --- motor neuron disease --- Microsatellites --- Alzheimer’s disease --- chromatin remodeler --- repair of DNA damage --- AP site analogue --- mutagens --- replication timing --- Thermococcus eurythermalis --- nucleolar stress --- gene expression --- mutations spectra --- origin firing --- Fanconi Anemia --- superfamily 2 ATPase --- DNA translocation --- DNA repair --- SSB signaling --- homologous recombination --- common fragile sites --- 8-chloro-adenosine --- replication --- genome stability --- mutagenicity --- fork reversal --- multiple sclerosis --- non-B DNA --- protein stability --- heterogeneity --- ubiquitin --- SenTraGorTM (GL13) --- replication restart --- EdU --- ?-arrestin --- NER --- aging --- SSB end resection --- oxidative stress --- ATR --- dormant origins --- R loops --- DNA damage response --- Difficult-to-Replicate Sequences --- DNA double-strand repair --- endonuclease IV --- ALS --- double strand break repair --- premature aging --- replication stress --- EXO1 --- POL? --- translesion synthesis --- strand displacements --- G2-arrest --- DNA replication pattern --- SSB repair --- genome integrity --- G protein-coupled receptor kinase interacting protein 2 (GIT2) --- MMR --- replicative stress --- senolytics --- spacer --- interactome --- ATR-Chk1 DDR pathway --- C9orf72 --- replication fork restart --- translesion DNA synthesis --- DNA damage --- mismatch repair --- DNA replication stress --- DNA helicase --- Polymerase kappa --- DNA fiber assay --- H1299 cells --- TLS --- APE2 --- ageing --- cell death --- chromosome --- TopBP1 --- barley --- clock proteins --- post-translational modification --- 8-oxoG --- S phase --- ataxia telangiectasia mutated (ATM) --- G protein-coupled receptor (GPCR) --- Polymerase eta --- cancer --- G protein-coupled receptor kinase (GRK) --- helicase --- genomic instability --- Parkinson’s disease --- nucleotide excision repair --- SupF --- Alzheimer's disease --- Parkinson's disease
Choose an application
Cellular Responses to Stress brings together a group of scientists who work on different but interrelated aspects of cellular stress responses. The book provides state-of-the-art information on the wide spectrum of ways in which cells can respond to different forms of stress induced by chemicals, oxidants, and DNA-damaging agents. Mechanisms are described that involve altered uptake and efflux of chemical agents, intracellular detoxification, and DNA damage responses. Many of these changes trigger a cascade of reactions mediated by stress-activated signaling pathways, which have the capacity to determine whether a cell will survive or die. The spectrum of topics covered in this book aims to provide a broad overview of our current knowledge of the different forms of adaptive response systems.It is hoped that this text will stimulate further research to establish the relative cellular role of specific response pathways and will enable us to gain a deeper understanding of the mechanisms that allow cells to live or die. This book will be valued by university researchers at all levels, industrial scientists in the pharmaceutical and biotechnology industries, and clinical researchers.Originally published in 1999.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Stress (Physiology) --- Cell metabolism --- Cellular control mechanisms --- Cells --- Metabolism --- Regulation --- AMPK. --- ASK1. --- Actin. --- Activation. --- Angiogenesis. --- Antibody. --- Antigen. --- Apoptosis. --- Autoimmunity. --- Autophosphorylation. --- C-Fos. --- C-Jun N-terminal kinases. --- C-terminus. --- Cell Cycle Arrest. --- Cell Line, Transformed. --- Cell cycle. --- Cell membrane. --- Cell migration. --- Cell surface receptor. --- Cellular differentiation. --- Cellular stress response. --- Conformational change. --- Cytochrome P450. --- Cytokine receptor. --- Cytokine. --- Cytotoxicity. --- DNA-PKcs. --- Drug metabolism. --- Ectopic expression. --- Effector (biology). --- Endonuclease. --- Enzyme. --- Epidermal growth factor receptor. --- Epidermal growth factor. --- Extracellular signal–regulated kinases. --- Fibroblast growth factor. --- Gene expression. --- Gene therapy. --- Gene. --- Germinal center. --- Glutathione S-transferase. --- HMG-CoA reductase. --- Heat shock. --- Histidine kinase. --- Hormone-sensitive lipase. --- Hsp27. --- Immortalised cell line. --- Immunodeficiency. --- Immunoglobulins. --- Immunoprecipitation. --- In vitro. --- Inducer. --- Inflammation. --- Jurkat cells. --- Kinase. --- Lymphotoxin. --- Macrophage colony-stimulating factor. --- Mechanism of action. --- Mechanistic target of rapamycin. --- Metabolism. --- Mitogen-activated protein kinase kinase. --- Mitogen-activated protein kinase. --- Mitogen. --- Mitosis. --- Model organism. --- Neuropeptide. --- Neurotoxin. --- Osmotic shock. --- Oxidative phosphorylation. --- Oxidative stress. --- P38 mitogen-activated protein kinases. --- Pathogenesis. --- Peptide. --- Peroxidase. --- Phosphatase. --- Phosphoinositide 3-kinase. --- Phosphorylation cascade. --- Phosphorylation. --- Post-translational modification. --- Protease. --- Protein kinase. --- Protein phosphorylation. --- Protein synthesis inhibitor. --- Protein. --- Proteolysis. --- RNA interference. --- Receptor (biochemistry). --- Receptor tyrosine kinase. --- Repressor. --- Response element. --- Signal transduction. --- Ternary Complex Factors. --- Thrombin. --- Transcription factor. --- Transcriptional regulation. --- Transfection. --- Transposable element. --- Tumor necrosis factor superfamily. --- Turgor pressure. --- Vascular endothelial growth factor.
Choose an application
The present book is devoted to all aspects of biosensing in a very broad definition, including, but not limited to, biomolecular composition used in biosensors (e.g., biocatalytic enzymes, DNAzymes, abiotic nanospecies with biocatalytic features, bioreceptors, DNA/RNA, aptasensors, etc.), physical signal transduction mechanisms (e.g., electrochemical, optical, magnetic, etc.), engineering of different biosensing platforms, operation of biosensors in vitro and in vivo (implantable or wearable devices), self-powered biosensors, etc. The biosensors can be represented with analogue devices measuring concentrations of analytes and binary devices operating in the YES/NO format, possibly with logical processing of input signals. Furthermore, the book is aimed at attracting young scientists and introducing them to the field, while providing newcomers with an enormous collection of literature references.
Technology: general issues --- metabolite sensors --- sensor biocompatibility --- ion selective electrodes --- foreign body reaction --- O2 --- glucose --- lactate --- biosensors --- bioelectrochemistry --- photo-biosensors --- enzyme --- biocatalysis --- electrochemical biosensors --- real-time --- continuous operation --- reagentless --- reusable --- calibration-free --- antibiofouling --- biosensor --- biomimetic membranes --- membrane-bound enzymes --- electrodes --- sulfur-containing nanomaterials --- metallic sulfide nanomaterials --- sulfur-containing quantum dots --- enzyme-based biosensors --- direct electron transfer (DET) --- redox enzymes --- nanostructured electrodes --- protein film voltammetry (PFV) --- glucose biosensors --- nanoporous metals --- nanoporous gold --- graphene --- carbon nanotube --- ordered mesoporous carbon --- additive manufacturing --- heme --- peroxidases --- semiconductors --- peroxidase mimics --- DNA assay --- nucleic acid --- isothermal --- signal amplification --- restriction endonuclease --- wearable biosensors --- metabolism --- remote monitoring --- sweat --- microfluidic --- 3D printing --- nanoparticle --- nanocomposite --- nanozyme --- synthesis --- catalytic properties --- nano-peroxidase --- nanooxidase --- nanolaccase --- electronanocatalyst --- amperometric (bio)sensors --- POC --- microfluidics --- immunosensor --- cancer --- biomarkers --- electrochemical DNA sensor --- nucleic acid sensor --- DNA --- RNA --- pathogen sensing --- 2D-materials --- field-effect transistor --- transition metal dichalcogenides --- black phosphorus --- phosphorene --- hexagonal boron nitride --- transition metal oxides --- current–potential curve --- multi-enzymatic cascades --- multianalyte detection --- mass-transfer-controlled amperometric response --- potentiometric coulometry --- MXenes --- 2D nanomaterials --- wearables --- electrochemistry --- bacteria --- electrochemical ELISA --- electrochemical immunoassays --- electrochemical aptamer-based assays --- chemical sensor --- field effect --- capacitive EIS sensor --- pH sensor --- enzyme biosensor --- label-free detection --- charged molecules --- DNA biosensor --- protein detection --- forensics --- biometrics --- cybersecurity --- fingerprints --- blood --- cipher --- non-invasive biosensors --- human physiological fluids --- tears --- saliva --- urine --- n/a --- current-potential curve
Choose an application
The present book is devoted to all aspects of biosensing in a very broad definition, including, but not limited to, biomolecular composition used in biosensors (e.g., biocatalytic enzymes, DNAzymes, abiotic nanospecies with biocatalytic features, bioreceptors, DNA/RNA, aptasensors, etc.), physical signal transduction mechanisms (e.g., electrochemical, optical, magnetic, etc.), engineering of different biosensing platforms, operation of biosensors in vitro and in vivo (implantable or wearable devices), self-powered biosensors, etc. The biosensors can be represented with analogue devices measuring concentrations of analytes and binary devices operating in the YES/NO format, possibly with logical processing of input signals. Furthermore, the book is aimed at attracting young scientists and introducing them to the field, while providing newcomers with an enormous collection of literature references.
metabolite sensors --- sensor biocompatibility --- ion selective electrodes --- foreign body reaction --- O2 --- glucose --- lactate --- biosensors --- bioelectrochemistry --- photo-biosensors --- enzyme --- biocatalysis --- electrochemical biosensors --- real-time --- continuous operation --- reagentless --- reusable --- calibration-free --- antibiofouling --- biosensor --- biomimetic membranes --- membrane-bound enzymes --- electrodes --- sulfur-containing nanomaterials --- metallic sulfide nanomaterials --- sulfur-containing quantum dots --- enzyme-based biosensors --- direct electron transfer (DET) --- redox enzymes --- nanostructured electrodes --- protein film voltammetry (PFV) --- glucose biosensors --- nanoporous metals --- nanoporous gold --- graphene --- carbon nanotube --- ordered mesoporous carbon --- additive manufacturing --- heme --- peroxidases --- semiconductors --- peroxidase mimics --- DNA assay --- nucleic acid --- isothermal --- signal amplification --- restriction endonuclease --- wearable biosensors --- metabolism --- remote monitoring --- sweat --- microfluidic --- 3D printing --- nanoparticle --- nanocomposite --- nanozyme --- synthesis --- catalytic properties --- nano-peroxidase --- nanooxidase --- nanolaccase --- electronanocatalyst --- amperometric (bio)sensors --- POC --- microfluidics --- immunosensor --- cancer --- biomarkers --- electrochemical DNA sensor --- nucleic acid sensor --- DNA --- RNA --- pathogen sensing --- 2D-materials --- field-effect transistor --- transition metal dichalcogenides --- black phosphorus --- phosphorene --- hexagonal boron nitride --- transition metal oxides --- current–potential curve --- multi-enzymatic cascades --- multianalyte detection --- mass-transfer-controlled amperometric response --- potentiometric coulometry --- MXenes --- 2D nanomaterials --- wearables --- electrochemistry --- bacteria --- electrochemical ELISA --- electrochemical immunoassays --- electrochemical aptamer-based assays --- chemical sensor --- field effect --- capacitive EIS sensor --- pH sensor --- enzyme biosensor --- label-free detection --- charged molecules --- DNA biosensor --- protein detection --- forensics --- biometrics --- cybersecurity --- fingerprints --- blood --- cipher --- non-invasive biosensors --- human physiological fluids --- tears --- saliva --- urine --- n/a --- current-potential curve
Listing 1 - 7 of 7 |
Sort by
|