Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULiège (1)

VIVES (1)

Vlaams Parlement (1)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2020 (2)

Listing 1 - 2 of 2
Sort by

Book
Functional Polymer Solutions and Gels-Physics and Novel Applications : Physics and Novel Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

“Functional Polymer Solutions and Gels—Physics and Novel Applications” contains a broad range of articles in this vast field of polymer and soft matter science. It shows insight into the field by highlighting how sticky (non-covalent) chemical bonds can assemble a seemingly water-like liquid into a gel, how ionic liquids influence the gelation behavior of poly(N-Isopropylacrylamide) as well as how the molecular composition of functional copolymers is reflected in the temperature-responsiveness. These physics were augmented by theoretical works on drag-reduction. Also, drug-release – an improved control of how fast or dependent on an external factor – and antibacterial properties were the topic of several works. Biomedical applications on how cell growth can be influenced and how vessels in biological systems, e.g., blood vessels, can be improved by functional polymers were complemented with papers on tomography by using gels. On totally different lines, also the topic of how asphalt can be improved and how functional polymers can be used for the enrichment and removal of substances. These different papers are a good representation of the whole area of functional polymers.

Keywords

Poly(N-isopropylacrylamide) --- tacticity --- ionic liquid --- rheology --- hydrogel --- vascular graft --- braided fiber strut --- swellability --- mechanical property --- N-isopropylacrylamide --- lower critical solution temperature --- thermoresponsive polymers --- hydrophobic interactions --- statistical modeling --- SBS-modified asphalt binder --- UV aging --- rheological properties --- functional group --- cracking --- osteoporosis --- strontium --- polyphenol tannic acid --- titanium --- osteoblasts --- osteoclasts --- hydrophilic molecularly imprinted chitosan --- deep eutectic solvents --- solid phase microextraction --- gallic acid --- response surface methodology --- coating --- drug delivery --- surface roughness --- polymers --- mesoporous silica --- polypropylene --- nonwoven fibers --- plasma --- imprinted polymer --- chromium --- carbon-fibers --- multifunctional composites --- nanocomposites --- fracture toughness --- associative polymer colloids --- micellar assemblies --- Reynolds stress model --- polymer --- turbulent model --- drag reduction --- DNS --- responsive gels in biomedical and diagnostic applications --- gel --- precision --- radiation therapy --- dosimetry --- 3D --- flattening filter free --- FFF --- oxygen scavenger --- dose rate --- magnetic resonance --- fluorescent gels --- radio-fluorogenic (RFG) gel --- tomographic fluorescence imaging --- polymer-gel radiation dosimetry --- 3D radiation dosimetry --- microscopic characteristic --- poly (styrene-butadiene-styrene)-modified asphalt --- modified clamps --- adhesion --- n/a


Book
Functional Polymer Solutions and Gels-Physics and Novel Applications : Physics and Novel Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

“Functional Polymer Solutions and Gels—Physics and Novel Applications” contains a broad range of articles in this vast field of polymer and soft matter science. It shows insight into the field by highlighting how sticky (non-covalent) chemical bonds can assemble a seemingly water-like liquid into a gel, how ionic liquids influence the gelation behavior of poly(N-Isopropylacrylamide) as well as how the molecular composition of functional copolymers is reflected in the temperature-responsiveness. These physics were augmented by theoretical works on drag-reduction. Also, drug-release – an improved control of how fast or dependent on an external factor – and antibacterial properties were the topic of several works. Biomedical applications on how cell growth can be influenced and how vessels in biological systems, e.g., blood vessels, can be improved by functional polymers were complemented with papers on tomography by using gels. On totally different lines, also the topic of how asphalt can be improved and how functional polymers can be used for the enrichment and removal of substances. These different papers are a good representation of the whole area of functional polymers.

Keywords

Research & information: general --- Poly(N-isopropylacrylamide) --- tacticity --- ionic liquid --- rheology --- hydrogel --- vascular graft --- braided fiber strut --- swellability --- mechanical property --- N-isopropylacrylamide --- lower critical solution temperature --- thermoresponsive polymers --- hydrophobic interactions --- statistical modeling --- SBS-modified asphalt binder --- UV aging --- rheological properties --- functional group --- cracking --- osteoporosis --- strontium --- polyphenol tannic acid --- titanium --- osteoblasts --- osteoclasts --- hydrophilic molecularly imprinted chitosan --- deep eutectic solvents --- solid phase microextraction --- gallic acid --- response surface methodology --- coating --- drug delivery --- surface roughness --- polymers --- mesoporous silica --- polypropylene --- nonwoven fibers --- plasma --- imprinted polymer --- chromium --- carbon-fibers --- multifunctional composites --- nanocomposites --- fracture toughness --- associative polymer colloids --- micellar assemblies --- Reynolds stress model --- polymer --- turbulent model --- drag reduction --- DNS --- responsive gels in biomedical and diagnostic applications --- gel --- precision --- radiation therapy --- dosimetry --- 3D --- flattening filter free --- FFF --- oxygen scavenger --- dose rate --- magnetic resonance --- fluorescent gels --- radio-fluorogenic (RFG) gel --- tomographic fluorescence imaging --- polymer-gel radiation dosimetry --- 3D radiation dosimetry --- microscopic characteristic --- poly (styrene-butadiene-styrene)-modified asphalt --- modified clamps --- adhesion --- Poly(N-isopropylacrylamide) --- tacticity --- ionic liquid --- rheology --- hydrogel --- vascular graft --- braided fiber strut --- swellability --- mechanical property --- N-isopropylacrylamide --- lower critical solution temperature --- thermoresponsive polymers --- hydrophobic interactions --- statistical modeling --- SBS-modified asphalt binder --- UV aging --- rheological properties --- functional group --- cracking --- osteoporosis --- strontium --- polyphenol tannic acid --- titanium --- osteoblasts --- osteoclasts --- hydrophilic molecularly imprinted chitosan --- deep eutectic solvents --- solid phase microextraction --- gallic acid --- response surface methodology --- coating --- drug delivery --- surface roughness --- polymers --- mesoporous silica --- polypropylene --- nonwoven fibers --- plasma --- imprinted polymer --- chromium --- carbon-fibers --- multifunctional composites --- nanocomposites --- fracture toughness --- associative polymer colloids --- micellar assemblies --- Reynolds stress model --- polymer --- turbulent model --- drag reduction --- DNS --- responsive gels in biomedical and diagnostic applications --- gel --- precision --- radiation therapy --- dosimetry --- 3D --- flattening filter free --- FFF --- oxygen scavenger --- dose rate --- magnetic resonance --- fluorescent gels --- radio-fluorogenic (RFG) gel --- tomographic fluorescence imaging --- polymer-gel radiation dosimetry --- 3D radiation dosimetry --- microscopic characteristic --- poly (styrene-butadiene-styrene)-modified asphalt --- modified clamps --- adhesion

Listing 1 - 2 of 2
Sort by