Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Choose an application
Choose an application
In 1974 the editors of the present volume published a well-received book entitled ``Latin Squares and their Applications''. It included a list of 73 unsolved problems of which about 20 have been completely solved in the intervening period and about 10 more have been partially solved. The present work comprises six contributed chapters and also six further chapters written by the editors themselves. As well as discussing the advances which have been made in the subject matter of most of the chapters of the earlier book, this new book contains one chapter which deals with a subject (r-orthogonal latin squares) which did not exist when the earlier book was written. The success of the former book is shown by the two or three hundred published papers which deal with questions raised by it.
Choose an application
Latin Squares and Their Applications Second edition offers a long-awaited update and reissue of this seminal account of the subject. The revision retains foundational, original material from the frequently-cited 1974 volume but is completely updated throughout. As with the earlier version, the author hopes to take the reader 'from the beginnings of the subject to the frontiers of research'. By omitting a few topics which are no longer of current interest, the book expands upon active and emerging areas. Also, the present state of knowledge regarding the 73 then-unsolved problems given at the
Magic squares. --- Latin squares and rectangles --- Squares, Magic --- Number theory --- Mathematical recreations
Choose an application
This volume contains the invited papers presented at the British Combinatorial Conference, held at the University of Surrey in July 1991. As in previous years, the speakers were mathematicians of the highest quality who spanned the subject area, and their papers will provide excellent reading for all those interested in combinatorics.
Choose an application
Latin Squares and Their Applications Second edition offers a long-awaited update and reissue of this seminal account of the subject. The revision retains foundational, original material from the frequently-cited 1974 volume but is completely updated throughout. As with the earlier version, the author hopes to take the reader 'from the beginnings of the subject to the frontiers of research'. By omitting a few topics which are no longer of current interest, the book expands upon active and emerging areas. Also, the present state of knowledge regarding the 73 then-unsolved problems given at the.
Choose an application
In 1974 the editors of the present volume published a well-received book entitled ``Latin Squares and their Applications''. It included a list of 73 unsolved problems of which about 20 have been completely solved in the intervening period and about 10 more have been partially solved. The present work comprises six contributed chapters and also six further chapters written by the editors themselves. As well as discussing the advances which have been made in the subject matter of most of the chapters of the earlier book, this new book contains one chapter which deals with a subject (r-or
Number theory --- Magic squares. --- Number theory. --- Number study --- Numbers, Theory of --- Algebra --- Latin squares and rectangles --- Squares, Magic --- Mathematical recreations
Listing 1 - 7 of 7 |
Sort by
|