Listing 1 - 8 of 8 |
Sort by
|
Choose an application
This book provides systematic knowledge of the advanced seat suspension design and control for heavy duty vehicles. -- Edited summary from book
Trucks --- Springs and suspension. --- Motor vehicles --- Seats --- Design. --- Automotive vehicles --- Transportation, Automotive --- Vehicles
Choose an application
This book provides systematic knowledge of the advanced seat suspension design and control for heavy duty vehicles. -- Edited summary from book
Motor vehicles --- Trucks --- Seats --- Design. --- Springs and suspension.
Choose an application
Modelling, Dynamics and Control of Electrified Vehicles provides a systematic overview of EV-related key components, including batteries, electric motors, ultracapacitors and system-level approaches, such as energy management systems, multi-source energy optimization, transmission design and control, braking system control and vehicle dynamics control. In addition, the book covers selected advanced topics, including Smart Grid and connected vehicles. This book shows how EV work, how to design them, how to save energy with them, and how to maintain their safety. The book aims to be an all-in-one reference for readers who are interested in EVs, or those trying to understand its state-of-the-art technologies and future trends.
Electric vehicles. --- EVs (Electric vehicles) --- Vehicles, Electric --- Motor vehicles
Choose an application
Modelling, Dynamics and Control of Electrified Vehicles provides a systematic overview of EV-related key components, including batteries, electric motors, ultracapacitors and system-level approaches, such as energy management systems, multi-source energy optimization, transmission design and control, braking system control and vehicle dynamics control. In addition, the book covers selected advanced topics, including Smart Grid and connected vehicles. This book shows how EV work, how to design them, how to save energy with them, and how to maintain their safety. The book aims to be an all-in-one reference for readers who are interested in EVs, or those trying to understand its state-of-the-art technologies and future trends.
Choose an application
This book covers complex issues for a vehicle suspension model, including non-linearities and uncertainties in a suspension model, network-induced time delays, and sampled-data model from a theoretical point of view. It includes control design methods such as neural network supervisory, sliding mode variable structure, optimal control, internal-model principle, feedback linearization control, input-to-state stabilization, and so on. Every control method is applied to the simulation for comparison and verification. Features: Includes theoretical derivation, proof, and simulation verification combined with suspension models Provides the vibration control strategies for sampled-data suspension models Focuses on the suspensions with time-delays instead of delay-free Covers all the models related to quarter-, half-, and full-vehicle suspensions Details rigorous mathematical derivation process for each theorem supported by MATLAB-based simulation This book is aimed at researchers and graduate students in automotive engineering, vehicle vibration, mechatronics, control systems, applied mechanics, and vehicle dynamics.
Active noise and vibration control. --- Motor vehicles --- Springs and suspension.
Choose an application
Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data, and control vehicle motion, are of great importance. The development of novel sensing technologies for CAVs has become a hotspot in recent years. Thanks to improved sensing technologies, CAVs are able to interpret sensory information to further detect obstacles, localize their positions, navigate themselves, and interact with other surrounding vehicles in the dynamic environment. Furthermore, leveraging computer vision and other sensing methods, in-cabin humans’ body activities, facial emotions, and even mental states can also be recognized. Therefore, the aim of this Special Issue has been to gather contributions that illustrate the interest in the sensing and control of CAVs.
Technology: general issues --- History of engineering & technology --- TROOP --- truck platooning --- path planning --- kalman filter --- V2V communication --- string stability --- off-tracking --- articulated cargo trucks --- kabsch algorithm --- potential field --- sigmoid curve --- autonomous vehicles --- connected and autonomous vehicles --- artificial neural networks --- end-to-end learning --- multi-task learning --- urban vehicle platooning --- simulation --- attention --- executive control --- simulated driving --- task-cuing experiment --- electroencephalogram --- fronto-parietal network --- object vehicle estimation --- radar accuracy --- data-driven --- radar latency --- weighted interpolation --- autonomous vehicle --- urban platooning --- vehicle-to-vehicle communication --- in-vehicle network --- analytic hierarchy architecture --- traffic scenes --- object detection --- multi-scale channel attention --- attention feature fusion --- collision warning system --- ultra-wideband --- dead reckoning --- time to collision --- vehicle dynamic parameters --- Unscented Kalman Filter --- multiple-model --- electric vehicle --- unified chassis control --- unsprung mass --- autonomous driving --- trajectory tracking --- real-time control --- model predictive control --- tyre blow-out --- yaw stability --- roll stability --- vehicle dynamics model --- n/a
Choose an application
Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data, and control vehicle motion, are of great importance. The development of novel sensing technologies for CAVs has become a hotspot in recent years. Thanks to improved sensing technologies, CAVs are able to interpret sensory information to further detect obstacles, localize their positions, navigate themselves, and interact with other surrounding vehicles in the dynamic environment. Furthermore, leveraging computer vision and other sensing methods, in-cabin humans’ body activities, facial emotions, and even mental states can also be recognized. Therefore, the aim of this Special Issue has been to gather contributions that illustrate the interest in the sensing and control of CAVs.
TROOP --- truck platooning --- path planning --- kalman filter --- V2V communication --- string stability --- off-tracking --- articulated cargo trucks --- kabsch algorithm --- potential field --- sigmoid curve --- autonomous vehicles --- connected and autonomous vehicles --- artificial neural networks --- end-to-end learning --- multi-task learning --- urban vehicle platooning --- simulation --- attention --- executive control --- simulated driving --- task-cuing experiment --- electroencephalogram --- fronto-parietal network --- object vehicle estimation --- radar accuracy --- data-driven --- radar latency --- weighted interpolation --- autonomous vehicle --- urban platooning --- vehicle-to-vehicle communication --- in-vehicle network --- analytic hierarchy architecture --- traffic scenes --- object detection --- multi-scale channel attention --- attention feature fusion --- collision warning system --- ultra-wideband --- dead reckoning --- time to collision --- vehicle dynamic parameters --- Unscented Kalman Filter --- multiple-model --- electric vehicle --- unified chassis control --- unsprung mass --- autonomous driving --- trajectory tracking --- real-time control --- model predictive control --- tyre blow-out --- yaw stability --- roll stability --- vehicle dynamics model --- n/a
Choose an application
Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data, and control vehicle motion, are of great importance. The development of novel sensing technologies for CAVs has become a hotspot in recent years. Thanks to improved sensing technologies, CAVs are able to interpret sensory information to further detect obstacles, localize their positions, navigate themselves, and interact with other surrounding vehicles in the dynamic environment. Furthermore, leveraging computer vision and other sensing methods, in-cabin humans’ body activities, facial emotions, and even mental states can also be recognized. Therefore, the aim of this Special Issue has been to gather contributions that illustrate the interest in the sensing and control of CAVs.
Technology: general issues --- History of engineering & technology --- TROOP --- truck platooning --- path planning --- kalman filter --- V2V communication --- string stability --- off-tracking --- articulated cargo trucks --- kabsch algorithm --- potential field --- sigmoid curve --- autonomous vehicles --- connected and autonomous vehicles --- artificial neural networks --- end-to-end learning --- multi-task learning --- urban vehicle platooning --- simulation --- attention --- executive control --- simulated driving --- task-cuing experiment --- electroencephalogram --- fronto-parietal network --- object vehicle estimation --- radar accuracy --- data-driven --- radar latency --- weighted interpolation --- autonomous vehicle --- urban platooning --- vehicle-to-vehicle communication --- in-vehicle network --- analytic hierarchy architecture --- traffic scenes --- object detection --- multi-scale channel attention --- attention feature fusion --- collision warning system --- ultra-wideband --- dead reckoning --- time to collision --- vehicle dynamic parameters --- Unscented Kalman Filter --- multiple-model --- electric vehicle --- unified chassis control --- unsprung mass --- autonomous driving --- trajectory tracking --- real-time control --- model predictive control --- tyre blow-out --- yaw stability --- roll stability --- vehicle dynamics model --- TROOP --- truck platooning --- path planning --- kalman filter --- V2V communication --- string stability --- off-tracking --- articulated cargo trucks --- kabsch algorithm --- potential field --- sigmoid curve --- autonomous vehicles --- connected and autonomous vehicles --- artificial neural networks --- end-to-end learning --- multi-task learning --- urban vehicle platooning --- simulation --- attention --- executive control --- simulated driving --- task-cuing experiment --- electroencephalogram --- fronto-parietal network --- object vehicle estimation --- radar accuracy --- data-driven --- radar latency --- weighted interpolation --- autonomous vehicle --- urban platooning --- vehicle-to-vehicle communication --- in-vehicle network --- analytic hierarchy architecture --- traffic scenes --- object detection --- multi-scale channel attention --- attention feature fusion --- collision warning system --- ultra-wideband --- dead reckoning --- time to collision --- vehicle dynamic parameters --- Unscented Kalman Filter --- multiple-model --- electric vehicle --- unified chassis control --- unsprung mass --- autonomous driving --- trajectory tracking --- real-time control --- model predictive control --- tyre blow-out --- yaw stability --- roll stability --- vehicle dynamics model
Listing 1 - 8 of 8 |
Sort by
|