Listing 1 - 6 of 6 |
Sort by
|
Choose an application
The field of cancer biology and developmental therapeutics is continually evolving as new methodologies are developed and new targets are discovered. Although multiple therapeutics directly target the malignant cells these drugs rarely prevent recurrence of disease or the progression of metastasis. The complex biology of tumors presents challenges in designing treatments that will eliminate the malignant cells as well as the supporting network of vasculature and stroma that allows for the comparison of tumors to developing organs in embryos. In addition to blood vessels and malignant cells, tumors consist of fibroblasts, immune and inflammatory cells, and a myriad of proteins that comprise the extracellular matrix. Effective eradication of malignant disease requires therapeutic strategies that factor in targeting the tumor microenvironment. In the past decade, a new class of anticancer drugs has emerged that interferes with tumor angiogenesis; however the clinical benefit from treatment with the first generation antiangiogenic agents added to the standard of care is often modest. Thus, there remains a critical need to understand the tumor microenvironment and to develop anti-cancer therapies that address this aspect of malignant disease. The first edition of The Tumor Microenvironment is intended to give a current perspective on the role of the tumor microenvironment in malignant progression and detail strategies for novel therapies directed towards the cellular matrix. This book explores the many biological and physiological aspects of the tumor as a tissue and includes chapters on the variety of cells that influence tumor growth and spread as well as the cell-associated and soluble proteins that can promote invasion and metastasis. Several chapters describe endothelial cells and pericytes that form tumor vasculature. Insights into the role of progenitor and stem cells are included. The contribution of the supporting stroma is addressed in addition to cell-cell signaling and cell-matrix interactions. Additional chapters describe the influence of infiltrating cells of the immune system on tumor growth. The Tumor Microenvironment is the definitive text detailing cutting edge research by experts in the field and will be a valued resource in the study of this important area of cancer biology for many years to come.
Cancer cells -- Regulation. --- Cancer cells. --- Cancer invasiveness. --- Carcinogenesis. --- Tumors -- Metabolism. --- Carcinogenesis --- Tumors --- Cancer cells --- Chemistry, Pharmaceutical --- Angiogenesis Modulating Agents --- Cell Physiological Phenomena --- Medicine --- Diseases --- Growth Inhibitors --- Antineoplastic Agents --- Stem Cells --- Investigative Techniques --- Pharmacology --- Therapeutic Uses --- Growth Substances --- Phenomena and Processes --- Chemistry --- Cells --- Analytical, Diagnostic and Therapeutic Techniques and Equipment --- Health Occupations --- Neoplasms --- Angiogenesis Inhibitors --- Tumor Microenvironment --- Drug Discovery --- Pathology --- Neoplastic Stem Cells --- Biological Science Disciplines --- Anatomy --- Physiological Effects of Drugs --- Natural Science Disciplines --- Disciplines and Occupations --- Pharmacologic Actions --- Chemical Actions and Uses --- Chemicals and Drugs --- Health & Biological Sciences --- Oncology --- Metabolism --- Growth --- Physiology, Pathological --- Tumors. --- Tumours --- Medicine. --- Cancer research. --- Pharmacology. --- Biomedicine. --- Cancer Research. --- Pharmacology/Toxicology. --- Drug effects --- Medical pharmacology --- Medical sciences --- Chemicals --- Chemotherapy --- Drugs --- Pharmacy --- Cancer research --- Clinical sciences --- Medical profession --- Human biology --- Life sciences --- Physicians --- Physiological effect --- Pathology, Cellular --- Cysts (Pathology) --- Oncology. --- Toxicology. --- Poisoning --- Poisons --- Toxicology
Choose an application
The field of cancer biology and developmental therapeutics is continually evolving as new methodologies are developed and new targets are discovered. Although multiple therapeutics directly target the malignant cells these drugs rarely prevent recurrence of disease or the progression of metastasis. The complex biology of tumors presents challenges in designing treatments that will eliminate the malignant cells as well as the supporting network of vasculature and stroma that allows for the comparison of tumors to developing organs in embryos. In addition to blood vessels and malignant cells, tumors consist of fibroblasts, immune and inflammatory cells, and a myriad of proteins that comprise the extracellular matrix. Effective eradication of malignant disease requires therapeutic strategies that factor in targeting the tumor microenvironment. In the past decade, a new class of anticancer drugs has emerged that interferes with tumor angiogenesis; however the clinical benefit from treatment with the first generation antiangiogenic agents added to the standard of care is often modest. Thus, there remains a critical need to understand the tumor microenvironment and to develop anti-cancer therapies that address this aspect of malignant disease. The first edition of The Tumor Microenvironment is intended to give a current perspective on the role of the tumor microenvironment in malignant progression and detail strategies for novel therapies directed towards the cellular matrix. This book explores the many biological and physiological aspects of the tumor as a tissue and includes chapters on the variety of cells that influence tumor growth and spread as well as the cell-associated and soluble proteins that can promote invasion and metastasis. Several chapters describe endothelial cells and pericytes that form tumor vasculature. Insights into the role of progenitor and stem cells are included. The contribution of the supporting stroma is addressed in addition to cell-cell signaling and cell-matrix interactions. Additional chapters describe the influence of infiltrating cells of the immune system on tumor growth. The Tumor Microenvironment is the definitive text detailing cutting edge research by experts in the field and will be a valued resource in the study of this important area of cancer biology for many years to come.
History of human medicine --- Pharmacology. Therapy --- Oncology. Neoplasms --- farmacologie --- toxicologie --- oncologie
Choose an application
This book will explore the many biological and physical aspects of the tumor microenvironment. The book will include chapters on the various cells that influence tumor growth and function as well as the cell-associated and soluble proteins that can promote invasion and metastasis. Several chapters will describe endothelial cells and pericytes that form tumor vasculature. Insights on the role of progenitor and stem cells will be included. The contribution of the supporting stroma will be addressed in addition to cell-cell signaling and cell-matrix interactions. Additional chapters will describe the influence of infiltrating cells of the immune system on tumor growth.--
Biomedicine. --- Cancer Research. --- Pharmacology/Toxicology. --- Medicine. --- Oncology. --- Toxicology. --- Médecine --- Cancérologie --- Toxicologie --- Carcinogenesis. --- Tumors --- Cancer cells --- Neoplasms --- Neoplastic Stem Cells. --- Metabolism. --- Growth. --- Physiology, Pathological. --- pathology. --- physiopathology. --- pathology --- physiopathology
Choose an application
Significance of Stem Cells to Tumor Development Cancer stem cells remain a controversial topic and the criteria that define cancer stem cells are continuing to evolve. A recent surge in stem cell research has ignited a field of discovery into many human diseases including diabetes, neuropathologies, and cancer. By replacing specific differentiated cells that have either been lost or died, stem cell therapy proves to be a very promising approach to the treatment of many debilitating diseases. Though stem cells may provide therapeutic benefit under certain conditions, they are also often implicated in the initiation, progression, and therapeutic resistance of malignant disease. This first edition of Stem Cells and Cancer is intended to give a current perspective on the role of stem cells in cancer and strategies for novel therapies directed toward tumor stem cells. The current cancer stem cell hypothesis is presented in several chapters with distinctions made between the hierarchical and stochastic models of tumor cell development. "Stemness," self-renewal, pluripotency, clonality, and tumorigenicity are important concepts applied towards defining cancer stem cells. Signaling pathways such as Wnt, Sonic Hedgehog, Notch, and Bmi-1 that are involved in differentiation, proliferation, and survival are implicated in the malignant process. Additional chapters address the identification of cancer stem cell populations through the evaluation of molecular markers such as CD133, CD44, and CD24, for example, or by Hoescht dye exclusion to recognize ‘side populations.’ Mesenchymal and hematopoietic stem cells are described as well as mouse models that are employed to elucidate the properties and functionality of stem cells in cancer and the stem cell niche. This book encompasses a wide variety of human cancers that include but are not limited to leukemia, gliomas, breast, and prostate cancers. Resistance to conventional therapies, genetic versus epigenetic changes that affect therapeutic response and strategies to prevent disease recurrence are challenges have been incorporated into this volume. Stem Cells and Cancer represents a compendium of cutting edge research by experts in the field and will be instrumental in the study of this intriguing line of investigation for many years to come. Rebecca Bagley is a senior scientist at Genzyme Corporation and has worked in the biotechnology industry for 20 years with degrees in biology from Wellesley College and Harvard University. Her expertise in drug development spans a wide range of approaches including immunotherapies, gene and protein therapies, and small molecule delivery with publications in journals such as Molecular Cancer Therapeutics, Cancer Research, and Microvascular Research . Her current research focuses on stem cells, tumor vasculature, and target validation. Dr. Beverly A. Teicher is Vice President of Oncology Research at Genzyme Corporation. Dr. Teicher completed a PhD in Bioorganic Chemistry at the Johns Hopkins University and postdoctoral training at Yale University School of Medicine. Dr. Teicher joined Dana-Farber Cancer Institute as an Assistant Professor of Pathology and rose to Associate Professor of Medicine and Radiation Therapy, Harvard Medical School at Dana-Farber Cancer Institute and Joint Center for Radiation Therapy. Dr. Teicher is an active member of the international scientific community having authored or co-authored more than 400 scientific publications. She has edited eight books, is senior editor for the journal Clinical Cancer Research and is series editor for the Cancer Drug Discovery and Development book series.
Cancer cells. --- Cancer --Etiology. --- Stem cells. --- Stem cells --- Cancer cells --- Cancer --- Neoplastic Stem Cells --- Stem Cells --- Cells --- Anatomy --- Cytology --- Oncology --- Biology --- Medicine --- Health & Biological Sciences --- Etiology --- Etiology. --- Colony-forming units (Cells) --- Mother cells --- Progenitor cells --- Medicine. --- Cancer research. --- Pharmacology. --- Biomedicine. --- Cancer Research. --- Pharmacology/Toxicology. --- Pathology, Cellular --- Oncology. --- Toxicology. --- Chemicals --- Pharmacology --- Poisoning --- Poisons --- Tumors --- Toxicology --- Drug effects --- Medical pharmacology --- Medical sciences --- Chemotherapy --- Drugs --- Pharmacy --- Cancer research --- Physiological effect
Choose an application
Pharmacology. Therapy --- Oncology. Neoplasms --- farmacie --- farmacologie --- stamcellen --- toxicologie --- oncologie
Choose an application
Significance of Stem Cells to Tumor Development Cancer stem cells remain a controversial topic and the criteria that define cancer stem cells are continuing to evolve. A recent surge in stem cell research has ignited a field of discovery into many human diseases including diabetes, neuropathologies, and cancer. By replacing specific differentiated cells that have either been lost or died, stem cell therapy proves to be a very promising approach to the treatment of many debilitating diseases. Though stem cells may provide therapeutic benefit under certain conditions, they are also often implicated in the initiation, progression, and therapeutic resistance of malignant disease. This first edition of Stem Cells and Cancer is intended to give a current perspective on the role of stem cells in cancer and strategies for novel therapies directed toward tumor stem cells. The current cancer stem cell hypothesis is presented in several chapters with distinctions made between the hierarchical and stochastic models of tumor cell development. "Stemness," self-renewal, pluripotency, clonality, and tumorigenicity are important concepts applied towards defining cancer stem cells. Signaling pathways such as Wnt, Sonic Hedgehog, Notch, and Bmi-1 that are involved in differentiation, proliferation, and survival are implicated in the malignant process. Additional chapters address the identification of cancer stem cell populations through the evaluation of molecular markers such as CD133, CD44, and CD24, for example, or by Hoescht dye exclusion to recognize side populations.' Mesenchymal and hematopoietic stem cells are described as well as mouse models that are employed to elucidate the properties and functionality of stem cells in cancer and the stem cell niche. This book encompasses a wide variety of human cancers that include but are not limited to leukemia, gliomas, breast, and prostate cancers. Resistance to conventional therapies, genetic versus epigenetic changes that affect therapeutic response and strategies to prevent disease recurrence are challenges have been incorporated into this volume. Stem Cells and Cancer represents a compendium of cutting edge research by experts in the field and will be instrumental in the study of this intriguing line of investigation for many years to come. Rebecca Bagley is a senior scientist at Genzyme Corporation and has worked in the biotechnology industry for 20 years with degrees in biology from Wellesley College and Harvard University. Her expertise in drug development spans a wide range of approaches including immunotherapies, gene and protein therapies, and small molecule delivery with publications in journals such as Molecular Cancer Therapeutics, Cancer Research, and Microvascular Research . Her current research focuses on stem cells, tumor vasculature, and target validation. Dr. Beverly A. Teicher is Vice President of Oncology Research at Genzyme Corporation. Dr. Teicher completed a PhD in Bioorganic Chemistry at the Johns Hopkins University and postdoctoral training at Yale University School of Medicine. Dr. Teicher joined Dana-Farber Cancer Institute as an Assistant Professor of Pathology and rose to Associate Professor of Medicine and Radiation Therapy, Harvard Medical School at Dana-Farber Cancer Institute and Joint Center for Radiation Therapy. Dr. Teicher is an active member of the international scientific community having authored or co-authored more than 400 scientific publications. She has edited eight books, is senior editor for the journal Clinical Cancer Research and is series editor for the Cancer Drug Discovery and Development book series.
Pharmacology. Therapy --- Oncology. Neoplasms --- farmacie --- farmacologie --- stamcellen --- toxicologie --- oncologie
Listing 1 - 6 of 6 |
Sort by
|