Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Elliptic Tales describes the latest developments in number theory by looking at one of the most exciting unsolved problems in contemporary mathematics-the Birch and Swinnerton-Dyer Conjecture. In this book, Avner Ash and Robert Gross guide readers through the mathematics they need to understand this captivating problem.The key to the conjecture lies in elliptic curves, which may appear simple, but arise from some very deep-and often very mystifying-mathematical ideas. Using only basic algebra and calculus while presenting numerous eye-opening examples, Ash and Gross make these ideas accessible to general readers, and, in the process, venture to the very frontiers of modern mathematics.
Counting. --- Curves, Elliptic. --- Elliptic functions. --- Number theory. --- Elliptic functions --- Curves, Elliptic --- Number theory --- Mathematics --- Physical Sciences & Mathematics --- Calculus --- Fonctions elliptiques --- Courbes elliptiques --- Théorie des nombres --- Number study --- Numbers, Theory of --- Elliptic curves --- Elliptic integrals --- Functions, Elliptic --- Integrals, Elliptic --- Algebra --- Curves, Algebraic --- Transcendental functions --- Functions of complex variables --- Integrals, Hyperelliptic
Choose an application
Mathematicians solve equations, or try to. But sometimes the solutions are not as interesting as the beautiful symmetric patterns that lead to them. Written in a friendly style for a general audience, Fearless Symmetry is the first popular math book to discuss these elegant and mysterious patterns and the ingenious techniques mathematicians use to uncover them. Hidden symmetries were first discovered nearly two hundred years ago by French mathematician évariste Galois. They have been used extensively in the oldest and largest branch of mathematics--number theory--for such diverse applications as acoustics, radar, and codes and ciphers. They have also been employed in the study of Fibonacci numbers and to attack well-known problems such as Fermat's Last Theorem, Pythagorean Triples, and the ever-elusive Riemann Hypothesis. Mathematicians are still devising techniques for teasing out these mysterious patterns, and their uses are limited only by the imagination. The first popular book to address representation theory and reciprocity laws, Fearless Symmetry focuses on how mathematicians solve equations and prove theorems. It discusses rules of math and why they are just as important as those in any games one might play. The book starts with basic properties of integers and permutations and reaches current research in number theory. Along the way, it takes delightful historical and philosophical digressions. Required reading for all math buffs, the book will appeal to anyone curious about popular mathematics and its myriad contributions to everyday life.
Number theory. --- Théorie des nombres --- Théorie des nombres --- Number theory --- Number study --- Numbers, Theory of --- Algebra
Choose an application
The new edition of this celebrated and long-unavailable book preserves the original book's content and structure and its unrivalled presentation of a universal method for the resolution of a class of singularities in algebraic geometry. At the same time, the book has been completely re-typeset, errors have been eliminated, proofs have been streamlined, the notation has been made consistent and uniform, an index has been added, and a guide to recent literature has been added. The book brings together ideas from algebraic geometry, differential geometry, representation theory and number theory, and will continue to prove of value for researchers and graduate students in these areas.
Lie groups. --- Symmetric spaces. --- Algebraic varieties. --- Embeddings (Mathematics) --- Imbeddings (Mathematics) --- Geometry, Algebraic --- Immersions (Mathematics) --- Varieties, Algebraic --- Linear algebraic groups --- Spaces, Symmetric --- Geometry, Differential --- Groups, Lie --- Lie algebras --- Symmetric spaces --- Topological groups --- Algebraic geometry
Choose an application
We use addition on a daily basis-yet how many of us stop to truly consider the enormous and remarkable ramifications of this mathematical activity? Summing It Up uses addition as a springboard to present a fascinating and accessible look at numbers and number theory, and how we apply beautiful numerical properties to answer math problems. Mathematicians Avner Ash and Robert Gross explore addition's most basic characteristics as well as the addition of squares and other powers before moving onward to infinite series, modular forms, and issues at the forefront of current mathematical research.Ash and Gross tailor their succinct and engaging investigations for math enthusiasts of all backgrounds. Employing college algebra, the first part of the book examines such questions as, can all positive numbers be written as a sum of four perfect squares? The second section of the book incorporates calculus and examines infinite series-long sums that can only be defined by the concept of limit, as in the example of 1+1/2+1/4+. . .=? With the help of some group theory and geometry, the third section ties together the first two parts of the book through a discussion of modular forms-the analytic functions on the upper half-plane of the complex numbers that have growth and transformation properties. Ash and Gross show how modular forms are indispensable in modern number theory, for example in the proof of Fermat's Last Theorem.Appropriate for numbers novices as well as college math majors, Summing It Up delves into mathematics that will enlighten anyone fascinated by numbers.
Number theory. --- Mathematics --- Number study --- Numbers, Theory of --- Algebra --- Absolute value. --- Addition. --- Analytic continuation. --- Analytic function. --- Automorphic form. --- Axiom. --- Bernoulli number. --- Big O notation. --- Binomial coefficient. --- Binomial theorem. --- Book. --- Calculation. --- Chain rule. --- Coefficient. --- Complex analysis. --- Complex number. --- Complex plane. --- Computation. --- Congruence subgroup. --- Conjecture. --- Constant function. --- Constant term. --- Convergent series. --- Coprime integers. --- Counting. --- Cusp form. --- Determinant. --- Diagram (category theory). --- Dirichlet series. --- Division by zero. --- Divisor. --- Elementary proof. --- Elliptic curve. --- Equation. --- Euclidean geometry. --- Existential quantification. --- Exponential function. --- Factorization. --- Fourier series. --- Function composition. --- Fundamental domain. --- Gaussian integer. --- Generating function. --- Geometric series. --- Geometry. --- Group theory. --- Hecke operator. --- Hexagonal number. --- Hyperbolic geometry. --- Integer factorization. --- Integer. --- Line segment. --- Linear combination. --- Logarithm. --- Mathematical induction. --- Mathematician. --- Mathematics. --- Matrix group. --- Modular form. --- Modular group. --- Natural number. --- Non-Euclidean geometry. --- Parity (mathematics). --- Pentagonal number. --- Periodic function. --- Polynomial. --- Power series. --- Prime factor. --- Prime number theorem. --- Prime number. --- Pythagorean theorem. --- Quadratic residue. --- Quantity. --- Radius of convergence. --- Rational number. --- Real number. --- Remainder. --- Riemann surface. --- Root of unity. --- Scientific notation. --- Semicircle. --- Series (mathematics). --- Sign (mathematics). --- Square number. --- Square root. --- Subgroup. --- Subset. --- Sum of squares. --- Summation. --- Taylor series. --- Theorem. --- Theory. --- Transfinite number. --- Triangular number. --- Two-dimensional space. --- Unique factorization domain. --- Upper half-plane. --- Variable (mathematics). --- Vector space.
Choose an application
Choose an application
Choose an application
Choose an application
We use addition on a daily basis-yet how many of us stop to truly consider the enormous and remarkable ramifications of this mathematical activity? Summing It Up uses addition as a springboard to present a fascinating and accessible look at numbers and number theory, and how we apply beautiful numerical properties to answer math problems. Mathematicians Avner Ash and Robert Gross explore addition's most basic characteristics as well as the addition of squares and other powers before moving onward to infinite series, modular forms, and issues at the forefront of current mathematical research.Ash and Gross tailor their succinct and engaging investigations for math enthusiasts of all backgrounds. Employing college algebra, the first part of the book examines such questions as, can all positive numbers be written as a sum of four perfect squares? The second section of the book incorporates calculus and examines infinite series-long sums that can only be defined by the concept of limit, as in the example of 1+1/2+1/4+. . .=? With the help of some group theory and geometry, the third section ties together the first two parts of the book through a discussion of modular forms-the analytic functions on the upper half-plane of the complex numbers that have growth and transformation properties. Ash and Gross show how modular forms are indispensable in modern number theory, for example in the proof of Fermat's Last Theorem.Appropriate for numbers novices as well as college math majors, Summing It Up delves into mathematics that will enlighten anyone fascinated by numbers.
Listing 1 - 8 of 8 |
Sort by
|