Narrow your search

Library

VUB (5)

ULiège (4)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UAntwerpen (3)

UCLL (3)

VIVES (3)

KU Leuven (2)

More...

Resource type

book (6)

digital (3)


Language

English (8)


Year
From To Submit

2016 (3)

2012 (2)

2010 (1)

2008 (2)

Listing 1 - 8 of 8
Sort by

Book
Elliptic tales : curves, counting, and number theory
Authors: ---
ISBN: 1283439751 9786613439758 1400841712 0691151199 9780691151199 9781400841714 6613439754 9781283439756 Year: 2012 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Elliptic Tales describes the latest developments in number theory by looking at one of the most exciting unsolved problems in contemporary mathematics-the Birch and Swinnerton-Dyer Conjecture. In this book, Avner Ash and Robert Gross guide readers through the mathematics they need to understand this captivating problem.The key to the conjecture lies in elliptic curves, which may appear simple, but arise from some very deep-and often very mystifying-mathematical ideas. Using only basic algebra and calculus while presenting numerous eye-opening examples, Ash and Gross make these ideas accessible to general readers, and, in the process, venture to the very frontiers of modern mathematics.

Fearless Symmetry : Exposing the Hidden Patterns of Numbers - New Edition
Authors: ---
ISBN: 0691124922 9780691124926 9780691138718 9781400837779 1400837774 0691138710 1282964895 9786612964893 9781282964891 Year: 2008 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mathematicians solve equations, or try to. But sometimes the solutions are not as interesting as the beautiful symmetric patterns that lead to them. Written in a friendly style for a general audience, Fearless Symmetry is the first popular math book to discuss these elegant and mysterious patterns and the ingenious techniques mathematicians use to uncover them. Hidden symmetries were first discovered nearly two hundred years ago by French mathematician évariste Galois. They have been used extensively in the oldest and largest branch of mathematics--number theory--for such diverse applications as acoustics, radar, and codes and ciphers. They have also been employed in the study of Fibonacci numbers and to attack well-known problems such as Fermat's Last Theorem, Pythagorean Triples, and the ever-elusive Riemann Hypothesis. Mathematicians are still devising techniques for teasing out these mysterious patterns, and their uses are limited only by the imagination. The first popular book to address representation theory and reciprocity laws, Fearless Symmetry focuses on how mathematicians solve equations and prove theorems. It discusses rules of math and why they are just as important as those in any games one might play. The book starts with basic properties of integers and permutations and reaches current research in number theory. Along the way, it takes delightful historical and philosophical digressions. Required reading for all math buffs, the book will appeal to anyone curious about popular mathematics and its myriad contributions to everyday life.


Book
Smooth compactifications of locally symmetric varieties
Authors: ---
ISBN: 9780521739559 9780511674693 9780511675430 0511675437 9780511672187 0511672187 0521739551 1107207592 9781107207592 1282486497 9781282486492 9786612486494 661248649X 0511674244 9780511674242 0511670907 9780511670909 0511674694 0511673450 9780511673450 Year: 2010 Publisher: Cambridge, U.K. : Cambridge University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The new edition of this celebrated and long-unavailable book preserves the original book's content and structure and its unrivalled presentation of a universal method for the resolution of a class of singularities in algebraic geometry. At the same time, the book has been completely re-typeset, errors have been eliminated, proofs have been streamlined, the notation has been made consistent and uniform, an index has been added, and a guide to recent literature has been added. The book brings together ideas from algebraic geometry, differential geometry, representation theory and number theory, and will continue to prove of value for researchers and graduate students in these areas.


Book
Summing it up : from one plus one to modern number theory
Authors: ---
ISBN: 140088053X Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

We use addition on a daily basis-yet how many of us stop to truly consider the enormous and remarkable ramifications of this mathematical activity? Summing It Up uses addition as a springboard to present a fascinating and accessible look at numbers and number theory, and how we apply beautiful numerical properties to answer math problems. Mathematicians Avner Ash and Robert Gross explore addition's most basic characteristics as well as the addition of squares and other powers before moving onward to infinite series, modular forms, and issues at the forefront of current mathematical research.Ash and Gross tailor their succinct and engaging investigations for math enthusiasts of all backgrounds. Employing college algebra, the first part of the book examines such questions as, can all positive numbers be written as a sum of four perfect squares? The second section of the book incorporates calculus and examines infinite series-long sums that can only be defined by the concept of limit, as in the example of 1+1/2+1/4+. . .=? With the help of some group theory and geometry, the third section ties together the first two parts of the book through a discussion of modular forms-the analytic functions on the upper half-plane of the complex numbers that have growth and transformation properties. Ash and Gross show how modular forms are indispensable in modern number theory, for example in the proof of Fermat's Last Theorem.Appropriate for numbers novices as well as college math majors, Summing It Up delves into mathematics that will enlighten anyone fascinated by numbers.

Keywords

Number theory. --- Mathematics --- Number study --- Numbers, Theory of --- Algebra --- Absolute value. --- Addition. --- Analytic continuation. --- Analytic function. --- Automorphic form. --- Axiom. --- Bernoulli number. --- Big O notation. --- Binomial coefficient. --- Binomial theorem. --- Book. --- Calculation. --- Chain rule. --- Coefficient. --- Complex analysis. --- Complex number. --- Complex plane. --- Computation. --- Congruence subgroup. --- Conjecture. --- Constant function. --- Constant term. --- Convergent series. --- Coprime integers. --- Counting. --- Cusp form. --- Determinant. --- Diagram (category theory). --- Dirichlet series. --- Division by zero. --- Divisor. --- Elementary proof. --- Elliptic curve. --- Equation. --- Euclidean geometry. --- Existential quantification. --- Exponential function. --- Factorization. --- Fourier series. --- Function composition. --- Fundamental domain. --- Gaussian integer. --- Generating function. --- Geometric series. --- Geometry. --- Group theory. --- Hecke operator. --- Hexagonal number. --- Hyperbolic geometry. --- Integer factorization. --- Integer. --- Line segment. --- Linear combination. --- Logarithm. --- Mathematical induction. --- Mathematician. --- Mathematics. --- Matrix group. --- Modular form. --- Modular group. --- Natural number. --- Non-Euclidean geometry. --- Parity (mathematics). --- Pentagonal number. --- Periodic function. --- Polynomial. --- Power series. --- Prime factor. --- Prime number theorem. --- Prime number. --- Pythagorean theorem. --- Quadratic residue. --- Quantity. --- Radius of convergence. --- Rational number. --- Real number. --- Remainder. --- Riemann surface. --- Root of unity. --- Scientific notation. --- Semicircle. --- Series (mathematics). --- Sign (mathematics). --- Square number. --- Square root. --- Subgroup. --- Subset. --- Sum of squares. --- Summation. --- Taylor series. --- Theorem. --- Theory. --- Transfinite number. --- Triangular number. --- Two-dimensional space. --- Unique factorization domain. --- Upper half-plane. --- Variable (mathematics). --- Vector space.


Book
Summing It Up
Authors: ---
ISBN: 9781400880539 Year: 2016 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Digital
Fearless Symmetry : Exposing the Hidden Patterns of Numbers - New Edition
Authors: ---
ISBN: 9781400837779 9780691138718 Year: 2008 Publisher: Princeton, N.J. Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Mathematics


Digital
Elliptic Tales : Curves, Counting, and Number Theory
Authors: ---
ISBN: 9781400841714 9780691151199 Year: 2012 Publisher: Princeton, N.J. Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Mathematics


Multi
Summing it up : from one plus one to modern number theory
Authors: ---
ISBN: 9781400880539 9780691170190 140088053X Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

We use addition on a daily basis-yet how many of us stop to truly consider the enormous and remarkable ramifications of this mathematical activity? Summing It Up uses addition as a springboard to present a fascinating and accessible look at numbers and number theory, and how we apply beautiful numerical properties to answer math problems. Mathematicians Avner Ash and Robert Gross explore addition's most basic characteristics as well as the addition of squares and other powers before moving onward to infinite series, modular forms, and issues at the forefront of current mathematical research.Ash and Gross tailor their succinct and engaging investigations for math enthusiasts of all backgrounds. Employing college algebra, the first part of the book examines such questions as, can all positive numbers be written as a sum of four perfect squares? The second section of the book incorporates calculus and examines infinite series-long sums that can only be defined by the concept of limit, as in the example of 1+1/2+1/4+. . .=? With the help of some group theory and geometry, the third section ties together the first two parts of the book through a discussion of modular forms-the analytic functions on the upper half-plane of the complex numbers that have growth and transformation properties. Ash and Gross show how modular forms are indispensable in modern number theory, for example in the proof of Fermat's Last Theorem.Appropriate for numbers novices as well as college math majors, Summing It Up delves into mathematics that will enlighten anyone fascinated by numbers.

Listing 1 - 8 of 8
Sort by