Choose an application
In recent years, considerable progress has been made in studying algebraic cycles using infinitesimal methods. These methods have usually been applied to Hodge-theoretic constructions such as the cycle class and the Abel-Jacobi map. Substantial advances have also occurred in the infinitesimal theory for subvarieties of a given smooth variety, centered around the normal bundle and the obstructions coming from the normal bundle's first cohomology group. Here, Mark Green and Phillip Griffiths set forth the initial stages of an infinitesimal theory for algebraic cycles. The book aims in part to understand the geometric basis and the limitations of Spencer Bloch's beautiful formula for the tangent space to Chow groups. Bloch's formula is motivated by algebraic K-theory and involves differentials over Q. The theory developed here is characterized by the appearance of arithmetic considerations even in the local infinitesimal theory of algebraic cycles. The map from the tangent space to the Hilbert scheme to the tangent space to algebraic cycles passes through a variant of an interesting construction in commutative algebra due to Angéniol and Lejeune-Jalabert. The link between the theory given here and Bloch's formula arises from an interpretation of the Cousin flasque resolution of differentials over Q as the tangent sequence to the Gersten resolution in algebraic K-theory. The case of 0-cycles on a surface is used for illustrative purposes to avoid undue technical complications.
512.73 --- Cohomology theory of algebraic varieties and schemes --- 512.73 Cohomology theory of algebraic varieties and schemes --- Algebraic cycles. --- Hodge theory. --- Geometry, Algebraic. --- Algebraic geometry --- Geometry --- Complex manifolds --- Differentiable manifolds --- Geometry, Algebraic --- Homology theory --- Cycles, Algebraic --- Algebraic cycles --- Hodge theory --- Addition. --- Algebraic K-theory. --- Algebraic character. --- Algebraic curve. --- Algebraic cycle. --- Algebraic function. --- Algebraic geometry. --- Algebraic number. --- Algebraic surface. --- Algebraic variety. --- Analytic function. --- Approximation. --- Arithmetic. --- Chow group. --- Codimension. --- Coefficient. --- Coherent sheaf cohomology. --- Coherent sheaf. --- Cohomology. --- Cokernel. --- Combination. --- Compass-and-straightedge construction. --- Complex geometry. --- Complex number. --- Computable function. --- Conjecture. --- Coordinate system. --- Coprime integers. --- Corollary. --- Cotangent bundle. --- Diagram (category theory). --- Differential equation. --- Differential form. --- Differential geometry of surfaces. --- Dimension (vector space). --- Dimension. --- Divisor. --- Duality (mathematics). --- Elliptic function. --- Embedding. --- Equation. --- Equivalence class. --- Equivalence relation. --- Exact sequence. --- Existence theorem. --- Existential quantification. --- Fermat's theorem. --- Formal proof. --- Fourier. --- Free group. --- Functional equation. --- Generic point. --- Geometry. --- Group homomorphism. --- Hereditary property. --- Hilbert scheme. --- Homomorphism. --- Injective function. --- Integer. --- Integral curve. --- K-group. --- K-theory. --- Linear combination. --- Mathematics. --- Moduli (physics). --- Moduli space. --- Multivector. --- Natural number. --- Natural transformation. --- Neighbourhood (mathematics). --- Open problem. --- Parameter. --- Polynomial ring. --- Principal part. --- Projective variety. --- Quantity. --- Rational function. --- Rational mapping. --- Reciprocity law. --- Regular map (graph theory). --- Residue theorem. --- Root of unity. --- Scientific notation. --- Sheaf (mathematics). --- Smoothness. --- Statistical significance. --- Subgroup. --- Summation. --- Tangent space. --- Tangent vector. --- Tangent. --- Terminology. --- Tetrahedron. --- Theorem. --- Transcendental function. --- Transcendental number. --- Uniqueness theorem. --- Vector field. --- Vector space. --- Zariski topology.
Choose an application
This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric? The authors comprehensively treat the results concerning Radon transforms and the infinitesimal versions of these two problems. Their main result implies that most Grassmannians are spectrally rigid to the first order. This is particularly important, for there are still few isospectrality results for positively curved spaces and these are the first such results for symmetric spaces of compact type of rank ›1. The authors exploit the theory of overdetermined partial differential equations and harmonic analysis on symmetric spaces to provide criteria for infinitesimal rigidity that apply to a large class of spaces. A substantial amount of basic material about Riemannian geometry, symmetric spaces, and Radon transforms is included in a clear and elegant presentation that will be useful to researchers and advanced students in differential geometry.
Radon transforms. --- Grassmann manifolds. --- Grassmannians --- Transforms, Radon --- Differential topology --- Manifolds (Mathematics) --- Integral geometry --- Integral transforms --- Adjoint. --- Automorphism. --- Cartan decomposition. --- Cartan subalgebra. --- Casimir element. --- Closed geodesic. --- Cohomology. --- Commutative property. --- Complex manifold. --- Complex number. --- Complex projective plane. --- Complex projective space. --- Complex vector bundle. --- Complexification. --- Computation. --- Constant curvature. --- Coset. --- Covering space. --- Curvature. --- Determinant. --- Diagram (category theory). --- Diffeomorphism. --- Differential form. --- Differential geometry. --- Differential operator. --- Dimension (vector space). --- Dot product. --- Eigenvalues and eigenvectors. --- Einstein manifold. --- Elliptic operator. --- Endomorphism. --- Equivalence class. --- Even and odd functions. --- Exactness. --- Existential quantification. --- G-module. --- Geometry. --- Grassmannian. --- Harmonic analysis. --- Hermitian symmetric space. --- Hodge dual. --- Homogeneous space. --- Identity element. --- Implicit function. --- Injective function. --- Integer. --- Integral. --- Isometry. --- Killing form. --- Killing vector field. --- Lemma (mathematics). --- Lie algebra. --- Lie derivative. --- Line bundle. --- Mathematical induction. --- Morphism. --- Open set. --- Orthogonal complement. --- Orthonormal basis. --- Orthonormality. --- Parity (mathematics). --- Partial differential equation. --- Projection (linear algebra). --- Projective space. --- Quadric. --- Quaternionic projective space. --- Quotient space (topology). --- Radon transform. --- Real number. --- Real projective plane. --- Real projective space. --- Real structure. --- Remainder. --- Restriction (mathematics). --- Riemann curvature tensor. --- Riemann sphere. --- Riemannian manifold. --- Rigidity (mathematics). --- Scalar curvature. --- Second fundamental form. --- Simple Lie group. --- Standard basis. --- Stokes' theorem. --- Subgroup. --- Submanifold. --- Symmetric space. --- Tangent bundle. --- Tangent space. --- Tangent vector. --- Tensor. --- Theorem. --- Topological group. --- Torus. --- Unit vector. --- Unitary group. --- Vector bundle. --- Vector field. --- Vector space. --- X-ray transform. --- Zero of a function.
Choose an application
The purpose of this book is to provide a self-contained account, accessible to the non-specialist, of algebra necessary for the solution of the integrability problem for transitive pseudogroup structures.Originally published in 1981.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Lie algebras. --- Ideals (Algebra) --- Pseudogroups. --- Global analysis (Mathematics) --- Lie groups --- Algebraic ideals --- Algebraic fields --- Rings (Algebra) --- Algebras, Lie --- Algebra, Abstract --- Algebras, Linear --- Lie algebras --- Pseudogroups --- 512.81 --- 512.81 Lie groups --- Ideals (Algebra). --- Lie, Algèbres de. --- Idéaux (algèbre) --- Pseudogroupes (mathématiques) --- Ordered algebraic structures --- Analytical spaces --- Addition. --- Adjoint representation. --- Algebra homomorphism. --- Algebra over a field. --- Algebraic extension. --- Algebraic structure. --- Analytic function. --- Associative algebra. --- Automorphism. --- Bilinear form. --- Bilinear map. --- Cartesian product. --- Closed graph theorem. --- Codimension. --- Coefficient. --- Cohomology. --- Commutative ring. --- Commutator. --- Compact space. --- Complex conjugate. --- Complexification (Lie group). --- Complexification. --- Conjecture. --- Constant term. --- Continuous function. --- Contradiction. --- Corollary. --- Counterexample. --- Diagram (category theory). --- Differentiable manifold. --- Differential form. --- Differential operator. --- Dimension (vector space). --- Dimension. --- Direct sum. --- Discrete space. --- Donald C. Spencer. --- Dual basis. --- Embedding. --- Epimorphism. --- Existential quantification. --- Exterior (topology). --- Exterior algebra. --- Exterior derivative. --- Faithful representation. --- Formal power series. --- Graded Lie algebra. --- Ground field. --- Homeomorphism. --- Homomorphism. --- Hyperplane. --- I0. --- Indeterminate (variable). --- Infinitesimal transformation. --- Injective function. --- Integer. --- Integral domain. --- Invariant subspace. --- Invariant theory. --- Isotropy. --- Jacobi identity. --- Levi decomposition. --- Lie algebra. --- Linear algebra. --- Linear map. --- Linear subspace. --- Local diffeomorphism. --- Mathematical induction. --- Maximal ideal. --- Module (mathematics). --- Monomorphism. --- Morphism. --- Natural transformation. --- Non-abelian. --- Partial differential equation. --- Pseudogroup. --- Pullback (category theory). --- Simple Lie group. --- Space form. --- Special case. --- Subalgebra. --- Submanifold. --- Subring. --- Summation. --- Symmetric algebra. --- Symplectic vector space. --- Telescoping series. --- Theorem. --- Topological algebra. --- Topological space. --- Topological vector space. --- Topology. --- Transitive relation. --- Triviality (mathematics). --- Unit vector. --- Universal enveloping algebra. --- Vector bundle. --- Vector field. --- Vector space. --- Weak topology. --- Lie, Algèbres de. --- Idéaux (algèbre) --- Pseudogroupes (mathématiques)
Choose an application
In Hypo-Analytic Structures Franois Treves provides a systematic approach to the study of the differential structures on manifolds defined by systems of complex vector fields. Serving as his main examples are the elliptic complexes, among which the De Rham and Dolbeault are the best known, and the tangential Cauchy-Riemann operators. Basic geometric entities attached to those structures are isolated, such as maximally real submanifolds and orbits of the system. Treves discusses the existence, uniqueness, and approximation of local solutions to homogeneous and inhomogeneous equations and delimits their supports. The contents of this book consist of many results accumulated in the last decade by the author and his collaborators, but also include classical results, such as the Newlander-Nirenberg theorem. The reader will find an elementary description of the FBI transform, as well as examples of its use. Treves extends the main approximation and uniqueness results to first-order nonlinear equations by means of the Hamiltonian lift.Originally published in 1993.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Differential equations, Partial. --- Manifolds (Mathematics) --- Vector fields. --- Direction fields (Mathematics) --- Fields, Direction (Mathematics) --- Fields, Slope (Mathematics) --- Fields, Vector --- Slope fields (Mathematics) --- Vector analysis --- Geometry, Differential --- Topology --- Partial differential equations --- Algebra homomorphism. --- Analytic function. --- Automorphism. --- Basis (linear algebra). --- Bijection. --- Bounded operator. --- C0. --- CR manifold. --- Cauchy problem. --- Cauchy sequence. --- Cauchy–Riemann equations. --- Characterization (mathematics). --- Coefficient. --- Cohomology. --- Commutative property. --- Commutator. --- Complex dimension. --- Complex manifold. --- Complex number. --- Complex space. --- Complex-analytic variety. --- Continuous function (set theory). --- Corollary. --- Coset. --- De Rham cohomology. --- Diagram (category theory). --- Diffeomorphism. --- Differential form. --- Differential operator. --- Dimension (vector space). --- Dirac delta function. --- Dirac measure. --- Eigenvalues and eigenvectors. --- Embedding. --- Equation. --- Exact differential. --- Existential quantification. --- Exterior algebra. --- F-space. --- Formal power series. --- Frobenius theorem (differential topology). --- Frobenius theorem (real division algebras). --- H-vector. --- Hadamard three-circle theorem. --- Hahn–Banach theorem. --- Holomorphic function. --- Hypersurface. --- Hölder condition. --- Identity matrix. --- Infimum and supremum. --- Integer. --- Integral equation. --- Integral transform. --- Intersection (set theory). --- Jacobian matrix and determinant. --- Linear differential equation. --- Linear equation. --- Linear map. --- Lipschitz continuity. --- Manifold. --- Mean value theorem. --- Method of characteristics. --- Monomial. --- Multi-index notation. --- Neighbourhood (mathematics). --- Norm (mathematics). --- One-form. --- Open mapping theorem (complex analysis). --- Open mapping theorem. --- Open set. --- Ordinary differential equation. --- Partial differential equation. --- Poisson bracket. --- Polynomial. --- Power series. --- Projection (linear algebra). --- Pullback (category theory). --- Pullback (differential geometry). --- Pullback. --- Riemann mapping theorem. --- Riemann surface. --- Ring homomorphism. --- Sesquilinear form. --- Sobolev space. --- Special case. --- Stokes' theorem. --- Stone–Weierstrass theorem. --- Submanifold. --- Subset. --- Support (mathematics). --- Surjective function. --- Symplectic geometry. --- Symplectic vector space. --- Taylor series. --- Theorem. --- Unit disk. --- Upper half-plane. --- Vector bundle. --- Vector field. --- Volume form.
Choose an application
This volume gives a clear introductory account of equivariant cohomology, a central topic in algebraic topology. Assuming readers have taken one semester of manifold theory and a year of algebraic topology, Loring Tu begins with the topological construction of equivariant cohomology, then develops the theory for smooth manifolds with the aid of differential forms. To keep the exposition simple, the equivariant localisation theorem is proven only for a circle action. An appendix gives a proof of the equivariant de Rham theorem, demonstrating that equivariant cohomology can be computed using equivariant differential forms. Examples and calculations illustrate new concepts. Exercises include hints or solutions, making this book suitable for self-study.
Cohomology operations. --- Operations (Algebraic topology) --- Algebraic topology --- Algebraic structure. --- Algebraic topology (object). --- Algebraic topology. --- Algebraic variety. --- Basis (linear algebra). --- Boundary (topology). --- CW complex. --- Cellular approximation theorem. --- Characteristic class. --- Classifying space. --- Coefficient. --- Cohomology ring. --- Cohomology. --- Comparison theorem. --- Complex projective space. --- Continuous function. --- Contractible space. --- Cramer's rule. --- Curvature form. --- De Rham cohomology. --- Diagram (category theory). --- Diffeomorphism. --- Differentiable manifold. --- Differential form. --- Differential geometry. --- Dual basis. --- Equivariant K-theory. --- Equivariant cohomology. --- Equivariant map. --- Euler characteristic. --- Euler class. --- Exponential function. --- Exponential map (Lie theory). --- Exponentiation. --- Exterior algebra. --- Exterior derivative. --- Fiber bundle. --- Fixed point (mathematics). --- Frame bundle. --- Fundamental group. --- Fundamental vector field. --- Group action. --- Group homomorphism. --- Group theory. --- Haar measure. --- Homotopy group. --- Homotopy. --- Hopf fibration. --- Identity element. --- Inclusion map. --- Integral curve. --- Invariant subspace. --- K-theory. --- Lie algebra. --- Lie derivative. --- Lie group action. --- Lie group. --- Lie theory. --- Linear algebra. --- Linear function. --- Local diffeomorphism. --- Manifold. --- Mathematics. --- Matrix group. --- Mayer–Vietoris sequence. --- Module (mathematics). --- Morphism. --- Neighbourhood (mathematics). --- Orthogonal group. --- Oscillatory integral. --- Principal bundle. --- Principal ideal domain. --- Quotient group. --- Quotient space (topology). --- Raoul Bott. --- Representation theory. --- Ring (mathematics). --- Singular homology. --- Spectral sequence. --- Stationary phase approximation. --- Structure constants. --- Sub"ient. --- Subcategory. --- Subgroup. --- Submanifold. --- Submersion (mathematics). --- Symplectic manifold. --- Symplectic vector space. --- Tangent bundle. --- Tangent space. --- Theorem. --- Topological group. --- Topological space. --- Topology. --- Unit sphere. --- Unitary group. --- Universal bundle. --- Vector bundle. --- Vector space. --- Weyl group.
Choose an application
This famous book was the first treatise on Lie groups in which a modern point of view was adopted systematically, namely, that a continuous group can be regarded as a global object. To develop this idea to its fullest extent, Chevalley incorporated a broad range of topics, such as the covering spaces of topological spaces, analytic manifolds, integration of complete systems of differential equations on a manifold, and the calculus of exterior differential forms. The book opens with a short description of the classical groups: unitary groups, orthogonal groups, symplectic groups, etc. These special groups are then used to illustrate the general properties of Lie groups, which are considered later. The general notion of a Lie group is defined and correlated with the algebraic notion of a Lie algebra; the subgroups, factor groups, and homomorphisms of Lie groups are studied by making use of the Lie algebra. The last chapter is concerned with the theory of compact groups, culminating in Peter-Weyl's theorem on the existence of representations. Given a compact group, it is shown how one can construct algebraically the corresponding Lie group with complex parameters which appears in the form of a certain algebraic variety (associated algebraic group). This construction is intimately related to the proof of the generalization given by Tannaka of Pontrjagin's duality theorem for Abelian groups. The continued importance of Lie groups in mathematics and theoretical physics make this an indispensable volume for researchers in both fields.
Continuous groups. --- Additive group. --- Adjoint representation. --- Algebra over a field. --- Algebraic extension. --- Algebraic variety. --- Algebraically closed field. --- Analytic function. --- Analytic manifold. --- Automorphism. --- Axiom of countability. --- Ball (mathematics). --- Cardinal number. --- Characteristic polynomial. --- Coefficient. --- Commutator subgroup. --- Complex number. --- Connected component (graph theory). --- Continuous function (set theory). --- Continuous function. --- Coordinate system. --- Coset. --- Countable set. --- Covering group. --- Covering space. --- Differential algebra. --- Differential calculus. --- Differential form. --- Differential of a function. --- Dual space. --- Eigenvalues and eigenvectors. --- Endomorphism. --- Equivalence class. --- Existential quantification. --- Exponential function. --- Exterior algebra. --- Fundamental group. --- Galois group. --- General topology. --- Geometry. --- Group (mathematics). --- Group theory. --- Hermitian matrix. --- Homeomorphism. --- Homogeneous space. --- Homomorphism. --- Homotopy group. --- Identity element. --- Identity matrix. --- Infinitesimal transformation. --- Integer. --- Invariant subspace. --- Irreducible representation. --- Kronecker product. --- Lie algebra. --- Lie group. --- Linear function. --- Linear map. --- Linear space (geometry). --- Linear subspace. --- Linearization. --- Locally connected space. --- Manifold. --- Mathematical induction. --- Matrix exponential. --- Modular arithmetic. --- Module (mathematics). --- Monodromy. --- Morphism. --- Open set. --- Orthogonal group. --- Parametric equation. --- Permutation. --- Power series. --- Projective plane. --- Real number. --- Regular matrix. --- Representation theory. --- Riemann surface. --- Simply connected space. --- Skew-symmetric matrix. --- Special case. --- Subalgebra. --- Subgroup. --- Submanifold. --- Subset. --- Summation. --- Symplectic geometry. --- Symplectic group. --- Tangent space. --- Theorem. --- Topological group. --- Topological space. --- Topology. --- Trigonometric polynomial. --- Union (set theory). --- Uniqueness theorem. --- Unitary group. --- Unitary matrix. --- Variable (mathematics). --- Vector space.
Choose an application
This volume offers a systematic treatment of certain basic parts of algebraic geometry, presented from the analytic and algebraic points of view. The notes focus on comparison theorems between the algebraic, analytic, and continuous categories.Contents include: 1.1 sheaf theory, ringed spaces; 1.2 local structure of analytic and algebraic sets; 1.3 Pn 2.1 sheaves of modules; 2.2 vector bundles; 2.3 sheaf cohomology and computations on Pn; 3.1 maximum principle and Schwarz lemma on analytic spaces; 3.2 Siegel's theorem; 3.3 Chow's theorem; 4.1 GAGA; 5.1 line bundles, divisors, and maps to Pn; 5.2 Grassmanians and vector bundles; 5.3 Chern classes and curvature; 5.4 analytic cocycles; 6.1 K-theory and Bott periodicity; 6.2 K-theory as a generalized cohomology theory; 7.1 the Chern character and obstruction theory; 7.2 the Atiyah-Hirzebruch spectral sequence; 7.3 K-theory on algebraic varieties; 8.1 Stein manifold theory; 8.2 holomorphic vector bundles on polydisks; 9.1 concluding remarks; bibliography.Originally published in 1974.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Geometry, Algebraic --- Geometry, Analytic --- Additive map. --- Affine variety. --- Algebraic curve. --- Algebraic geometry. --- Algebraic operation. --- Algebraic surface. --- Algebraic variety. --- Analytic continuation. --- Analytic set. --- Analytic space. --- Atiyah–Hirzebruch spectral sequence. --- Automorphism. --- Bott periodicity theorem. --- Cauchy's integral formula. --- Chern class. --- Chow's theorem. --- Codimension. --- Coherence condition. --- Cohomology operation. --- Cohomology ring. --- Cohomology. --- Cokernel. --- Commutative diagram. --- Comparison theorem. --- Complex manifold. --- Complex vector bundle. --- De Rham cohomology. --- Diagram (category theory). --- Differentiable manifold. --- Differential form. --- Differential geometry. --- Differential topology. --- Dimension (vector space). --- Divisor (algebraic geometry). --- Divisor. --- Duality (mathematics). --- Epimorphism. --- Equation. --- Exact sequence. --- Fiber bundle. --- Fundamental class. --- General linear group. --- Grassmannian. --- Group homomorphism. --- Hilbert's syzygy theorem. --- Holomorphic function. --- Holomorphic sheaf. --- Holomorphic vector bundle. --- Homomorphism. --- Homotopy group. --- Homotopy. --- Irreducibility (mathematics). --- Isomorphism class. --- Jacobian matrix and determinant. --- K-theory. --- Laurent series. --- Lie derivative. --- Line bundle. --- Linear map. --- Manifold. --- Mathematical induction. --- Measure (mathematics). --- Meromorphic function. --- Module (mathematics). --- Morphism. --- Neighbourhood (mathematics). --- Obstruction theory. --- Polynomial. --- Power series. --- Presheaf (category theory). --- Principal bundle. --- Product topology. --- Projective space. --- Projective variety. --- Resolution of singularities. --- Riemann surface. --- Ring (mathematics). --- Ring homomorphism. --- Schwarz lemma. --- Sheaf (mathematics). --- Sheaf cohomology. --- Sheaf of modules. --- Simplicial complex. --- Special case. --- Spectral sequence. --- Stein manifold. --- Submanifold. --- Subset. --- Surjective function. --- Tangent bundle. --- Tangent space. --- Tensor algebra. --- Theorem. --- Topological space. --- Topology. --- Transcendence degree. --- Variable (mathematics). --- Vector bundle. --- Weierstrass preparation theorem. --- Zariski topology.
Choose an application
The description for this book, Seminar On Minimal Submanifolds. (AM-103), Volume 103, will be forthcoming.
Minimal submanifolds. --- A priori estimate. --- Analytic function. --- Banach space. --- Boundary (topology). --- Boundary value problem. --- Bounded set (topological vector space). --- Branch point. --- Cauchy–Riemann equations. --- Center manifold. --- Closed geodesic. --- Codimension. --- Coefficient. --- Cohomology. --- Compactness theorem. --- Comparison theorem. --- Configuration space. --- Conformal geometry. --- Conformal group. --- Conformal map. --- Continuous function. --- Cross product. --- Curve. --- Degeneracy (mathematics). --- Diffeomorphism. --- Differential form. --- Dirac operator. --- Discrete group. --- Divergence theorem. --- Eigenvalues and eigenvectors. --- Elementary proof. --- Equation. --- Existence theorem. --- Existential quantification. --- Exterior derivative. --- First variation. --- Free boundary problem. --- Fundamental group. --- Gauss map. --- Geodesic. --- Geometry. --- Group action. --- Hamiltonian mechanics. --- Harmonic function. --- Harmonic map. --- Hausdorff dimension. --- Hausdorff measure. --- Homotopy group. --- Homotopy. --- Hurewicz theorem. --- Hyperbolic 3-manifold. --- Hyperbolic manifold. --- Hyperbolic space. --- Hypersurface. --- Implicit function theorem. --- Infimum and supremum. --- Injective function. --- Inner automorphism. --- Isolated singularity. --- Isometry group. --- Isoperimetric problem. --- Klein bottle. --- Kleinian group. --- Limit set. --- Lipschitz continuity. --- Mapping class group. --- Maxima and minima. --- Maximum principle. --- Minimal surface of revolution. --- Minimal surface. --- Monotonic function. --- Möbius transformation. --- Norm (mathematics). --- Orthonormal basis. --- Parametric surface. --- Periodic function. --- Poincaré conjecture. --- Projection (linear algebra). --- Regularity theorem. --- Riemann surface. --- Riemannian manifold. --- Schwarz reflection principle. --- Second fundamental form. --- Semi-continuity. --- Simply connected space. --- Special case. --- Stein's lemma. --- Subalgebra. --- Subgroup. --- Submanifold. --- Subsequence. --- Support (mathematics). --- Symplectic manifold. --- Tangent space. --- Teichmüller space. --- Theorem. --- Trace (linear algebra). --- Uniformization. --- Uniqueness theorem. --- Variational principle. --- Yamabe problem.
Choose an application
In this monograph the authors redevelop the theory systematically using two different approaches. A general mechanism for the deformation of structures on manifolds was developed by Donald Spencer ten years ago. A new version of that theory, based on the differential calculus in the analytic spaces of Grothendieck, was recently given by B. Malgrange. The first approach adopts Malgrange's idea in defining jet sheaves and linear operators, although the brackets and the non-linear theory arc treated in an essentially different manner. The second approach is based on the theory of derivations, and its relationship to the first is clearly explained. The introduction describes examples of Lie equations and known integrability theorems, and gives applications of the theory to be developed in the following chapters and in the subsequent volume.
Differential geometry. Global analysis --- Lie groups --- Lie algebras --- Differential equations --- Groupes de Lie --- Algèbres de Lie --- Equations différentielles --- 514.76 --- Groups, Lie --- Symmetric spaces --- Topological groups --- Algebras, Lie --- Algebra, Abstract --- Algebras, Linear --- Equations, Differential --- Bessel functions --- Calculus --- Geometry of differentiable manifolds and of their submanifolds --- Differential equations. --- Lie algebras. --- Lie groups. --- 517.91 Differential equations --- 514.76 Geometry of differentiable manifolds and of their submanifolds --- Algèbres de Lie --- Equations différentielles --- 517.91. --- Numerical solutions --- Surfaces, Deformation of --- Surfaces (mathématiques) --- Déformation --- Pseudogroups. --- Pseudogroupes (mathématiques) --- 517.91 --- Adjoint representation. --- Adjoint. --- Affine transformation. --- Alexander Grothendieck. --- Analytic function. --- Associative algebra. --- Atlas (topology). --- Automorphism. --- Bernhard Riemann. --- Big O notation. --- Bundle map. --- Category of topological spaces. --- Cauchy–Riemann equations. --- Coefficient. --- Commutative diagram. --- Commutator. --- Complex conjugate. --- Complex group. --- Complex manifold. --- Computation. --- Conformal map. --- Continuous function. --- Coordinate system. --- Corollary. --- Cotangent bundle. --- Curvature tensor. --- Deformation theory. --- Derivative. --- Diagonal. --- Diffeomorphism. --- Differentiable function. --- Differential form. --- Differential operator. --- Differential structure. --- Direct proof. --- Direct sum. --- Ellipse. --- Endomorphism. --- Equation. --- Exact sequence. --- Exactness. --- Existential quantification. --- Exponential function. --- Exponential map (Riemannian geometry). --- Exterior derivative. --- Fiber bundle. --- Fibration. --- Frame bundle. --- Frobenius theorem (differential topology). --- Frobenius theorem (real division algebras). --- Group isomorphism. --- Groupoid. --- Holomorphic function. --- Homeomorphism. --- Integer. --- J-invariant. --- Jacobian matrix and determinant. --- Jet bundle. --- Linear combination. --- Linear map. --- Manifold. --- Maximal ideal. --- Model category. --- Morphism. --- Nonlinear system. --- Open set. --- Parameter. --- Partial derivative. --- Partial differential equation. --- Pointwise. --- Presheaf (category theory). --- Pseudo-differential operator. --- Pseudogroup. --- Quantity. --- Regular map (graph theory). --- Requirement. --- Riemann surface. --- Right inverse. --- Scalar multiplication. --- Sheaf (mathematics). --- Special case. --- Structure tensor. --- Subalgebra. --- Subcategory. --- Subgroup. --- Submanifold. --- Subset. --- Tangent bundle. --- Tangent space. --- Tangent vector. --- Tensor field. --- Tensor product. --- Theorem. --- Torsion tensor. --- Transpose. --- Variable (mathematics). --- Vector bundle. --- Vector field. --- Vector space. --- Volume element. --- Surfaces (mathématiques) --- Déformation --- Analyse sur une variété
Choose an application
The present volume reflects both the diversity of Bochner's pursuits in pure mathematics and the influence his example and thought have had upon contemporary researchers.Originally published in 1971.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Mathematical analysis --- -Advanced calculus --- Analysis (Mathematics) --- Algebra --- Addresses, essays, lectures --- Mathematical analysis. --- -517.1 Mathematical analysis --- -Addresses, essays, lectures --- 517.1 Mathematical analysis --- 517.1. --- Approximation theory. --- System analysis. --- 517.1 --- Network analysis --- Network science --- Network theory --- Systems analysis --- System theory --- Mathematical optimization --- Theory of approximation --- Functional analysis --- Functions --- Polynomials --- Chebyshev systems --- Absolute continuity. --- Analytic continuation. --- Analytic function. --- Asymptotic expansion. --- Automorphism. --- Banach algebra. --- Banach space. --- Bessel function. --- Big O notation. --- Bounded operator. --- Branch point. --- Cauchy's integral formula. --- Cauchy's integral theorem. --- Characterization (mathematics). --- Cohomology. --- Commutative property. --- Compact operator. --- Compact space. --- Complex analysis. --- Complex number. --- Complex plane. --- Continuous function (set theory). --- Continuous function. --- Convolution. --- Coset. --- Covariance operator. --- Differentiable function. --- Differentiable manifold. --- Differential form. --- Dimension (vector space). --- Discrete group. --- Dominated convergence theorem. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Equation. --- Equivalence class. --- Even and odd functions. --- Existential quantification. --- First variation. --- Formal power series. --- Fréchet derivative. --- Fubini's theorem. --- Function space. --- Functional analysis. --- Fundamental group. --- Green's function. --- Haar measure. --- Hermite polynomials. --- Hermitian symmetric space. --- Holomorphic function. --- Hyperbolic partial differential equation. --- Infimum and supremum. --- Infinite product. --- Integral equation. --- Lebesgue measure. --- Lie algebra. --- Lie group. --- Linear map. --- Markov chain. --- Meromorphic function. --- Metric space. --- Monotonic function. --- Natural number. --- Norm (mathematics). --- Normal subgroup. --- Null set. --- Partition of unity. --- Pointwise. --- Polynomial. --- Power series. --- Pseudogroup. --- Riemann surface. --- Riemannian manifold. --- Schrödinger equation. --- Self-adjoint operator. --- Self-adjoint. --- Semigroup. --- Semisimple algebra. --- Sesquilinear form. --- Sign (mathematics). --- Singular perturbation. --- Special case. --- Spectral theory. --- Stokes' theorem. --- Subgroup. --- Submanifold. --- Subset. --- Support (mathematics). --- Symplectic geometry. --- Symplectic manifold. --- Theorem. --- Uniform convergence. --- Unitary operator. --- Unitary representation. --- Upper and lower bounds. --- Vector bundle. --- Vector field. --- Volterra's function. --- Weierstrass theorem. --- Zorn's lemma.