TY - BOOK ID - 995129 TI - Lectures on prability theory and statistics : école d'été de probabilités de Saint-Flour XXVII - 1997 AU - Bertoin, J. AU - Martinelli, F. AU - Peres, Y. AU - Bernard, Pierre AU - Ecole d'été de probabilites de Saint-Flour PY - 1999 VL - 1717 SN - 3540665935 354048115X PB - Berlin ; Heidelberg ; new York Springer Verlag DB - UniCat KW - Stochastic processes KW - Mathematics. KW - Probabilities. KW - Statistics. KW - Probability Theory and Stochastic Processes. KW - Statistical Theory and Methods. KW - Mathematical statistics KW - Statistique mathématique KW - Wiskundige statistiek KW - Statistics . KW - Statistical analysis KW - Statistical data KW - Statistical methods KW - Statistical science KW - Mathematics KW - Econometrics KW - Probability KW - Statistical inference KW - Combinations KW - Chance KW - Least squares KW - Risk UR - https://www.unicat.be/uniCat?func=search&query=sysid:995129 AB - Part I, Bertoin, J.: Subordinators: Examples and Applications: Foreword.- Elements on subordinators.- Regenerative property.- Asymptotic behaviour of last passage times.- Rates of growth of local time.- Geometric properties of regenerative sets.- Burgers equation with Brownian initial velocity.- Random covering.- Lévy processes.- Occupation times of a linear Brownian motion.- Part II, Martinelli, F.: Lectures on Glauber Dynamics for Discrete Spin Models: Introduction.- Gibbs Measures of Lattice Spin Models.- The Glauber Dynamics.- One Phase Region.- Boundary Phase Transitions.- Phase Coexistence.- Glauber Dynamics for the Dilute Ising Model.- Part III, Peres, Yu.: Probability on Trees: An Introductory Climb: Preface.- Basic Definitions and a Few Highlights.- Galton-Watson Trees.- General percolation on a connected graph.- The first-Moment method.- Quasi-independent Percolation.- The second Moment Method.- Electrical Networks.- Infinite Networks.- The Method of Random Paths.- Transience of Percolation Clusters.- Subperiodic Trees.- The Random Walks RW (lambda) .- Capacity.-.Intersection-Equivalence.- Reconstruction for the Ising Model on a Tree,- Unpredictable Paths in Z and EIT in Z3.- Tree-Indexed Processes.- Recurrence for Tree-Indexed Markov Chains.- Dynamical Pecsolation.- Stochastic Domination Between Trees. ER -