TY - BOOK ID - 78009475 TI - Finite von Neumann algebras and masas AU - Sinclair, Allan M. AU - Smith, Roger R. PY - 2008 SN - 0521719194 9780521719193 9780511666230 0511666233 9781107367951 1107367956 9781107363045 1107363047 9780511894152 0511894155 1139885618 1107372488 1107369061 1299405541 110736549X PB - Cambridge [England] ; New York : Cambridge University Press, DB - UniCat KW - Von Neumann algebras KW - Algebras, Von Neumann KW - Algebras, W KW - Neumann algebras KW - Rings of operators KW - W*-algebras KW - C*-algebras KW - Hilbert space KW - Von Neumann algebras. UR - https://www.unicat.be/uniCat?func=search&query=sysid:78009475 AB - A thorough account of the methods that underlie the theory of subalgebras of finite von Neumann algebras, this book contains a substantial amount of current research material and is ideal for those studying operator algebras. The conditional expectation, basic construction and perturbations within a finite von Neumann algebra with a fixed faithful normal trace are discussed in detail. The general theory of maximal abelian self-adjoint subalgebras (masas) of separable II1 factors is presented with illustrative examples derived from group von Neumann algebras. The theory of singular masas and Sorin Popa's methods of constructing singular and semi-regular masas in general separable II1 factor are explored. Appendices cover the ultrapower of a II1 factor and the properties of unbounded operators required for perturbation results. Proofs are given in considerable detail and standard basic examples are provided, making the book understandable to postgraduates with basic knowledge of von Neumann algebra theory. ER -